Аморфные тела физика. Аморфные твердые тела

Наряду с кристаллическими твердыми телами встречаются аморфные твердые тела. У аморфных тел в отличие от кристаллов нет строгого порядка в расположении атомов. Только ближайшие атомы - соседи - располагаются в некотором порядке. Но

строгой повторяемости во всех направлениях одною того же элемента структуры, которая характерна для кристаллов, в аморфных телах нет.

Часто одно и то же вещество может находиться как в кристаллическом, так и в аморфном состоянии. Например, кварц может быть как в кристаллической, так и в аморфной форме (кремнезем). Кристаллическую форму кварца схематически можно представить в виде решетки из правильных шестиугольников (рис. 77, а). Аморфная структура кварца также имеет вид решетки, но неправильной формы. Наряду с шестиугольниками в ней встречаются пяти- и семиугольники (рис. 77, б).

Свойства аморфных тел. Все аморфные тела изотропны: их физические свойства одинаковы по всем направлениям. К аморфным телам принадлежат стекло, многие пластмассы, смола, канифоль, сахарный леденец и др.

При внешних воздействиях аморфные тела обнаруживают одновременно упругие свойства, подобно твердым телам, и текучесть, подобно жидкостям. При кратковременных воздействиях (ударах) они ведут себя как твердое тело и при сильном ударе раскалываются на куски. Но при очень продолжительном воздействии аморфные тела текут. Так, например, кусок смолы постепенно растекается по твердой поверхности. Атомы или молекулы аморфных тел, подобно молекулам жидкости, имеют определенное время «оседлой жизни» время колебаний около положения равновесия. Но в отличие от жидкостей это время у них весьма велико. В этом отношении аморфные тела близки к кристаллическим, так как перескоки атомов из одного положения равновесия в другое происходят редко.

При низких температурах аморфные тела по своим свойствам напоминают твердые тела. Текучестью они почти не обладают, но по мере повышения температуры постепенно размягчаются и их свойства все более и более приближаются к свойствам жидкостей. Это происходит потому, что с ростом температуры постепенно учащаются перескоки атомов из одного положения

равновесия в другое. Никакой определенной температуры плавления у аморфных тел, в отличие от кристаллических, нет.

Физика твердого тела. Все свойства твердых тел (кристаллических и аморфных) могут быть объяснены на основе знания их атомно-молекулярной структуры и законов движения молекул, атомов, ионов и электронов, слагающих твердые тела. Исследования свойств твердых тел объединены в большой области современной физики - физики твердого тела. Развитие физики твердого тела стимулируется в основном потребностями техники. Приблизительно половина физиков мира работает в области физики твердого тела. Разумеется, достижения в этой области немыслимы без глубоких знаний всех остальных разделов физики.

1. Чем отличаются кристаллические тела от аморфных? 2. Что такое анизотропия? 3. Приведите примеры монокристаллических, поликристал-лических и аморфных тел. 4. Чем отличаются краевые дислокации от винтовых?

Твёрдое тело является одним из четырёх фундаментальных состояний материи, кроме жидкости, газа и плазмы. Оно характеризуется структурной жёсткостью и устойчивостью к изменению формы или объёма. В отличие от жидкости, твёрдый объект не течёт, не принимает форму контейнера, в который его помещают. Твёрдое тело не расширяется, чтобы заполнить весь доступный объём, как это делает газ.
Атомы в твёрдом теле тесно связаны друг с другом, находятся в упорядоченном состоянии в узлах кристаллической решётки (это металлы, обычный лёд, сахар, соль, алмаз), или располагаются нерегулярно, не имеют строгой повторяемости в структуре кристаллической решётки (это аморфные тела, такие как оконное стекло, канифоль, слюда или пластмасса).

Кристаллические тела

Кристаллические твёрдые тела или кристаллы имеют отличительную внутреннюю особенность - структуру в виде кристаллической решётки, в которой определённое положение занимают атомы, молекулы или ионы вещества.
Кристаллическая решётка приводит к существованию особенных плоских граней у кристаллов, которые отличают одно вещество от другого. При воздействии рентгеновских лучей, каждая кристаллическая решётка излучает характерный рисунок, который можно использовать для идентификации вещества. Грани кристаллов пересекаются под определёнными углами, отличающими одно вещество от другого. Если кристалл расщепить, то новые грани будут пересекаться под теми же углами, что у исходного.


Например, galena - галенит, pyrite - пирит, quartz - кварц. Грани кристалла пересекаются под прямым углом в галените (PbS) и пирите (FeS 2), под другими углами в кварце.

Свойства кристаллов

  • постоянный объём;
  • правильная геометрическая форма;
  • анизотропия - различие механических, световых, электрических и тепловых свойств от направления в кристалле;
  • чётко определённая температура плавления, так как она зависит от регулярности кристаллической решётки. Межмолекулярные силы, удерживающие твёрдое вещество вместе, однородны, и требуется одинаковое количество тепловой энергии, чтобы одновременно разорвать каждое взаимодействие.

Аморфные тела

Примерами аморфных тел, не имеющих строгой структуры и повторяемости ячеек кристаллической решётки, являются: стекло, смола, тефлон, полиуретан, нафталин, поливинилхлорид.



Они имеют два характерных свойства: изотропность и отсутствие определённой температуры плавления.
Изотропность аморфных тел понимают, как одинаковость физических свойств вещества по всем направлениям.
В аморфном твёрдом теле расстояние до соседних узлов кристаллической решётки и количество соседних узлов изменяется по всему материалу. Поэтому, чтобы разорвать межмолекулярные взаимодействия, требуется различное количество тепловой энергии. Следовательно, аморфные вещества медленно размягчаются в широком диапазоне температур и не имеют чёткой температуры плавления.
Особенностью аморфных твёрдых тел является то, что при низких температурах они имеют свойства твёрдых тел, а при повышении температуры - свойства жидкостей.

Аморфные тела

Амо́рфные вещества́ (тела́) (от др.-греч. «не-» и μορφή «вид, форма») - конденсированное состояние вещества, атомарная структура которых имеет ближний порядок и не имеет дальнего порядка , характерного для кристаллических структур . В отличие от кристаллов стабильно-аморфные вещества не затвердевают с образованием кристаллических граней, и, (если не были под сильнейшим анизотропным воздействием - сжатием или электрическим полем , например) обладают изотропией свойств, то есть не обнаруживают различных свойств в разных направлениях. И не имеют определённой точки плавления : при повышении температуры стабильно-аморфные вещества постепенно размягчаются и выше температуры стеклования (T g) переходят в жидкое состояние . Вещества с высокой скоростью кристаллизации, обычно имеющие (поли-)кристаллических структуру , но сильно переохлаждённые при затвердевании в аморфное состояние, при последующем нагреве незадолго до плавления рекристаллизуются (в твёрдом состоянии с небольшим выделением тепла), а затем плавятся как обычные поликристаллические.

Получаются при высокой скорости затвердевания(остывания) жидкого расплава или конденсацией паров на охлаждённую заметно ниже температуры ПЛАВЛЕНИЯ(не кипения!) подложку (любой предмет). Соотношение реальной скорости охлаждения (dT/dt) и характеристической скорости кристаллизации определяет долю поликристаллов в аморфном объёме. Скорость кристаллизации - параметр вещества, слабо зависящий от давления и от температуры (около точки плавления - сильно). И сильно зависящий от сложности состава - для металлов порядка долей-десятков миллисекунд; а для стёкол при комнатной температуре - сотни и тысячи лет (старые стёкла и зеркала мутнеют).

Электрические и механические свойства аморфных веществ ближе к таковым для монокристаллов, чем для поликристаллов из-за отсутствия резких и сильно загрязнённых примесями межкристаллических переходов(границ) с зачастую абсолютно другим химическим составом.

Немеханические свойства полуаморфных состояний обычно являются промежуточными между аморфным и кристаллическим и изотропны . Однако отсутствие резких межкристаллических переходов заметно влияет на электрические и механические свойства, делая их похожими на аморфные.

При внешних воздействиях аморфные вещества обнаруживают одновременно упругие свойства, подобно кристаллическим твердым веществам, и текучесть , подобно жидкости. Так, при кратковременных воздействиях (ударах) они ведут себя как твёрдые вещества и при сильном ударе раскалываются на куски. Но при очень продолжительном воздействии (например растяжении) аморфные вещества текут. Например, аморфным веществом также является смола (или гудрон , битум). Если раздробить её на мелкие части и получившейся массой заполнить сосуд, то через некоторое время смола сольётся в единое целое и примет форму сосуда.

В зависимости от электрических свойств, разделяют аморфные металлы , аморфные неметаллы, и аморфные полупроводники.

См. также

(устаревший термин)

Wikimedia Foundation . 2010 .

Смотреть что такое "Аморфные тела" в других словарях:

    Все, что признается реально существующим и занимающим часть пространства, носит название физического Т. Всякое физическое Т. образовано из вещества (см. Вещество) и представляет собой, согласно наиболее распространенному учению, совокупность… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Физика твёрдого тела раздел физики конденсированного состояния, задачей которого является описание физических свойств твёрдых тел с точки зрения их атомарного строения. Интенсивно развивалась в XX веке после открытия квантовой механики.… … Википедия

    Химия органического твердого тела (англ. organic sold state chemistry) – раздел химии твердого тела, изучающий всевозможные химические и физико химические аспекты органических твердых тел (ОТТ), в частности, – их синтез, строение, свойства,… … Википедия

    Физика кристаллов Кристалл кристаллография Кристаллическая решётка Типы кристаллических решёток Дифракция в кристаллах Обратная решётка Ячейка Вигнера Зейтца Зона Бриллюэна Структурный фактор базиса Атомный фактор рассеяния Типы связей в… … Википедия

    Раздел физики, изучающий структуру и свойства твердых тел. Научные данные о микроструктуре твердых веществ и о физических и химических свойствах составляющих их атомов необходимы для разработки новых материалов и технических устройств. Физика… … Энциклопедия Кольера

    - (химия твердого состояния), раздел физ. химии, изучающий строение, св ва и методы получения твердых в в. X. т. т. связана с физикой твердого тела, кристаллографией, минералогией, физ. хим. механикой, механохимией, радиационной химией, является… … Химическая энциклопедия

    Химия твёрдого тела раздел химии, изучающий разные аспекты твердофазных веществ, в частности, их синтез, структуру, свойства, применение и др.. Ее объектами исследования являются кристаллические и аморфные, неорганические и органические… … Википедия

    - (ИФТТ РАН) Международное название Institute of Solid State Physics, RAS Основан 1963 Директор чл. к. В. … Википедия

    Институт физики твёрдого тела РАН (ИФТТ РАН) Международное название Institute of Solid State Physics, RAS Основан 15 февраля 1963 Директор чл. корр. РАН В.В. Кведер … Википедия


Термин «аморфное» переводится с греческого буквально как «не вид», «не форма». Такие вещества не обладают кристаллической структурой, они не подвергаются расщеплению с формированием кристаллических граней. Как правило, аморфное тело изотропно, то есть его физические свойства не зависят от направления внешнего воздействия.

В течение определенного промежутка времени (месяцев, недель, дней) отдельные аморфные тела могут самопроизвольно переходить в кристаллическое состояние. Так, например, можно наблюдать, как мед или сахарный леденец спустя некоторое время теряют прозрачность. В таких случаях обычно говорят, что продукты «засахарились». При этом, зачерпнув засахарившийся мед ложкой или разломив леденец, можно действительно наблюдать сформировавшиеся кристаллики сахара, которые ранее существовали в аморфном виде.

Такая самопроизвольная кристаллизация веществ указывает на разную степень устойчивости состояний. Таким образом, аморфное тело менее устойчиво.

АМОРФНЫЕ ТЕЛА (греческий amorphos - бесформенный) - тела, в которых элементарные составные частицы (атомы, ионы, молекулы, их комплексы) располагаются в пространстве хаотически. Для отличия аморфных тел от кристаллических (см. Кристаллы) используют рентгеноструктурный анализ (см.). Кристаллические тела на рентгенограммах дают четкую определенную дифракционную картину в виде колец, линий, пятен, а аморфные тела - размытое неправильное изображение.

Аморфные тела имеют следующие особенности: 1) в обычных условиях изотропны, то есть их свойства (механические, электрические, химические, тепловые и так далее) одинаковы во всех направлениях; 2) не имеют определенной температуры плавления, и при повышении температуры большинство аморфных тел, постепенно размягчаясь, переходит в жидкое состояние. Поэтому аморфные тела можно рассматривать как переохлажденные жидкости, не успевшие закристаллизоваться из-за резкого возрастания вязкости (см.) в силу увеличения сил взаимодействия между отдельными молекулами. Многие вещества в зависимости от способов получения могут находиться в аморфном, промежуточном или кристаллическом состояниях (белки, сера, кремнезем и так далее). Однако существуют вещества, которые находятся практически только в одном из этих состояний. Так, большинство металлов, солей находятся в кристаллическом состоянии.

Аморфные тела широко распространены (стекло, естественные и искусственные смолы, каучук и так далее). Искусственные полимерные материалы, также являющиеся аморфные тела, стали незаменимыми в технике, быту, медицине (лаки, краски, пластмассы для протезирования, различные полимерные пленки).

В живой природе к аморфным телам относится цитоплазма и большинство структурных элементов клеток и тканей, состоящих из биополимеров - длинноцепочечных макромолекул: белков, нуклеиновых кислот, липидов, углеводов. Молекулы биополимеров легко взаимодействуют друг с другом, давая агрегаты (см. Агрегация), или рои-коацерваты (см. Коацервация). Аморфные тела находятся в клетках также в виде включений, запасных веществ (крахмал, липиды).

Особенностью полимеров, входящих в состав аморфных тел биологических объектов, является наличие узких пределов физико-химических зон обратимого состояния, напр. при повышении температуры выше критической необратимо изменяются их структура и свойства (коагуляция белков).

Аморфные тела, образованные рядом искусственных полимеров, в зависимости от температуры могут находиться в трех состояниях: стеклообразном, высокоэластическом и жидком (вязко-текучем).

Для клеток живого организма характерны переходы из жидкого в высокоэластическое состояние при постоянной температуре, например ретракция кровяного сгустка, мышечное сокращение (см.). В биологических системах аморфные тела играют решающую роль в поддержании цитоплазмы в стационарном состоянии. Важна роль аморфных тел в поддержании формы и прочности биологических объектов: целлюлозная оболочка растительных клеток, оболочки спор и бактерий, кожа животных и так далее.

Библиография: Бреслер С. Е. и Ерусалимский Б. Л. Физика и химия макромолекул, М.-Л., 1965; Китайгородский А. И. Рентгеноструктурный анализ мелкокристаллических и аморфных тел, М.-Л., 1952; он же. Порядок и беспорядок в мире атомов, М., 1966; Кобеко П. П. Аморфные вещества, М.-Л., 1952; Сетлоу Р. и Поллард Э. Молекулярная биофизика, пер. с англ., М., 1964.