Как читаются формулы сокращенного умножения. Калькулятор онлайн.Упрощение многочлена.Умножение многочленов

>>Математика: Формулы сокращенного умножения

Формулы сокращенного умножения

Имеется несколько случаев, когда умножение одного многочлена на другой приводит к компактному, легко запоминающемуся результату. В этих случаях предпочтительнее не умножать каждый раз один многочлен на другой, а пользоваться готовым результатом. Рассмотрим эти случаи.

1. Квадрат суммы и квадрат разности:

Пример 1. Раскрыть скобки в выражении:

а) (Зх + 2) 2 ;

б) (5а 2 - 4b 3) 2

а) Воспользуемся формулой (1), учтя, что в роли а выступает Зх, а в роли b - число 2.
Получим:

(Зх + 2) 2 = (Зх) 2 + 2 Зх 2 + 2 2 = 9x 2 + 12x + 4.

б) Воспользуемся формулой (2) , учтя, что в роли а выступает5а 2 , а в ролиb выступает 4b 3 . Получим:

(5а 2 -4b 3) 2 = (5а 2) 2 - 2- 5a 2 4b 3 + (4b 3) 2 = 25a 4 -40a 2 b 3 + 16b 6 .

При использовании формул квадрата суммы или квадрата разности учитывайте, что
(- a - b) 2 = (а + b) 2 ;
(b-a) 2 = (a-b) 2 .

Это следует из того, что (- а) 2 = а 2 .

Отметим, что на формулах (1) и (2) основаны некоторые математические фокусы, позволяющие производить вычисления в уме.

Например, можно практически устно возводить в квадрат числа, оканчивающиеся на 1 и 9. В самом деле

71 2 = (70 + 1) 2 = 70 2 + 2 70 1 + 1 2 = 4900 + 140 + 1 = 5041;
91 2 = (90 + I) 2 = 90 2 + 2 90 1 + 1 2 = 8100 + 180 + 1 = 8281;
69 2 = (70 - I) 2 = 70 2 - 2 70 1 + 1 2 = 4900 - 140 + 1 = 4761.

Иногда можно быстро возвести в квадрат и число, оканчивающееся цифрой 2 или цифрой 8. Например,

102 2 = (100 + 2) 2 = 100 2 + 2 100 2 + 2 2 = 10 000 + 400 + 4 = 10 404;

48 2 = (50 - 2) 2 = 50 2 - 2 50 2 + 2 2 = 2500 - 200 + 4 = 2304.

Но самый элегантный фокус связан с возведением в квадрат чисел, оканчивающихся цифрой 5.
Проведем соответствующие рассуждения для 85 2 .

Имеем:

85 2 = (80 + 5) 2 = 80 2 + 2 80 5 + 5 2 =-80 (80+ 10)+ 25 = 80 90 + 25 = 7200 + 25 = 7225.

Замечаем, что для вычисления 85 2 достаточно было умножить 8 на 9 и к полученному результату приписать справа 25. Аналогично можно поступать и в других случаях. Например, 35 2 = 1225 (3 4 = 12 и к полученному числу приписали справа 25);

65 2 = 4225; 1252 = 15625 (12 18 = 156 и к полученному числу приписали справа 25).

Раз уж мы с вами заговорили о различных любопытных обстоятельствах, связанных со скучными (на первый взгляд) формулами (1) и (2), то дополним этот разговор следующим геометрическим рассуждением. Пусть а и b - положительные числа. Рассмотрим квадрат со стороной а + b и вырежем в двух его углах квадраты со сторонами, соответственно равными а и b (рис. 4).


Площадь квадрата со стороной а + b равна (а + b) 2 . Но этот квадрат мы разрезали на четыре части: квадрат со стороной а (его площадь равна а 2), квадрат со стороной b (его площадь равна b 2), два прямоугольника со сторонами а и b (площадь каждого такого прямоугольника равна ab). Значит, (а + b) 2 = а 2 + b 2 + 2аb, т. е. получили формулу (1).

Умножим двучлен а + b на двучлен а - b. Получим:
(а + b) (а - b) = а 2 - аb + bа - b 2 = а 2 - b 2 .
Итак

Любое равенство в математике употребляется как слева направо (т.е. левая часть равенства заменяется его правой частью), так и справа налево (т.е. правая часть равенства заменяется его левой частью). Если формулу C) использовать слева направо, то она позволяет заменить произведение (а + b) (а - b) готовым результатом а 2 - b 2 . Эту же формулу можно использовать справа налево, тогда она позволяет заменить разность квадратов а 2 - b 2 произведением (а + b) (а - b). Формуле (3) в математике дано специальное название - разность квадратов.

Замечание. Не путайте термины «разность квадратов» к и «квадрат разности». Разность квадратов - это а 2 - b 2 , значит, речь идет о формуле (3); квадрат разности - это (a- b) 2 , значит речь идет о формуле (2). На обычном языке формулу (3) читают «справа налево» так:

разность квадратов двух чисел (выражений) равна произведению суммы этих чисел (выражений) на их разность,

Пример 2. Выполнить умножение

(3x- 2y)(3x+ 2y)
Решение. Имеем:
(Зх - 2у) (Зх + 2у)= (Зx) 2 - (2у) 2 = 9x 2 - 4y 2 .

Пример 3. Представить двучлен 16x 4 - 9 в виде произведения двучленов.

Решение. Имеем: 16x 4 =(4x 2) 2 , 9 = З 2 , значит, заданный двучлен есть разность квадратов, т.е. к нему можно применить формулу (3), прочитанную справа налево. Тогда получим:

16x 4 - 9 = (4x 2) 2 - З 2 = (4x 2 + 3)(4x 2 - 3)

Формула (3), как и формулы (1) и (2), используется для математических фокусов. Смотрите:

79 81 = (80 - 1) (80 + 1) - 802 - I2 = 6400 - 1 = 6399;
42 38 = D0 + 2) D0 - 2) = 402 - 22 = 1600 - 4 = 1596.

Завершим разговор о формуле разности квадратов любопытным геометрическим рассуждением. Пусть а и b - положительные числа, причем а > b. Рассмотрим прямоугольник со сторонами а + b и а - b (рис. 5). Его площадь равна (а + b) (а - b). Отрежем прямоугольник со сторонами b и а - b и подклеим его к оставшейся части так, как показано на рисунке 6. Ясно, что полученная фигура имеет ту же площадь, т. е. (а + b) (а - b). Но эту фигуру можно
построить так: из квадрата со стороной а вырезать квадрат со стороной b (это хорошо видно на рис. 6). Значит, площадь новой фигуры равна а 2 - b 2 . Итак, (а + b) (а - b) = а 2 - b 2 , т. е. получили формулу (3).

3. Разность кубов и сумма кубов

Умножим двучлен а - b на трехчлен а 2 + ab + b 2 .
Получим:
(a - b) (а 2 + ab + b 2) = а а 2 + а ab + а b 2 - b а 2 - b аb -b b 2 = а 3 + а 2 b + аb 2 -а 2 b-аb 2 -b 3 = а 3 -b 3 .

Аналогично

(а + b) (а 2 - аb + b 2) = а 3 + b 3

(проверьте это сами). Итак,

Формулу (4) обычно называют разностью кубов , формулу(5) - суммой кубов. Попробуем перевести формулы (4) и (5) на обычный язык. Прежде чем это сделать, заметим, что выражение a 2 + ab + b 2 похоже на выражение а 2 + 2ab + b 2 , которое фигурировало в формуле (1) и давало (а + b) 2 ; выражение а 2 - ab + b 2 похоже на выражение а 2 - 2ab + b 2 , которое фигурировало в формуле (2) и давало (а - b) 2 .

Чтобы отличить (в языке) эти пары выражений друг от друга, каждое из выражений а 2 + 2ab + b 2 и а 2 - 2ab + b 2 называют полным квадратом (суммы или разности), а каждое из выражений а 2 + ab + b 2 и а 2 - ab + b 2 называют неполным квадратом (суммы или разности). Тогда получается следующий перевод формул (4) и (5) (прочитанных «справа налево») на обычный язык:

разность кубов двух чисел (выражений) равна произведению разности этих чисел (выражений) на неполный квадрат их суммы; сумма кубов двух чисел (выражений) равна произведению суммы этих чисел (выражений) на неполный квадрат их разности.

Замечание. Все полученные в этом параграфе формулы (1)-(5) используются как слева направо, так и справа налево, только в первом случае (слева направо) говорят, что (1)-(5) - формулы сокращенного умножения, а во втором случае (справа налево) говорят, что (1)-(5) - формулы разложения на множители.

Пример 4. Выполнить умножение (2х- 1)(4x 2 + 2х +1).

Решение. Так как первый множитель есть разность одночленов 2х и 1, а второй множитель - неполный квадрат их суммы, то можно воспользоваться формулой (4). Получим:

(2х - 1)(4x 2 + 2х + 1) = (2x) 3 - I 3 = 8x 3 - 1.

Пример 5. Представить двучлен 27а 6 + 8b 3 в виде произведения многочленов.

Решение. Имеем: 27а 6 = (За 2) 3 , 8b 3 =(2b) 3 . Значит, заданный двучлен есть сумма кубов, т. е. к нему можно применить формулу 95), прочитанную справа налево. Тогда получим:

27а 6 + 8b 3 = (За 2) 3 + (2b) 3 = (За 2 + 2Ь) ((За 2) 2 - За 2 2Ь + (2b) 2) = (За 2 + 2Ь) (9а 4 - 6а 2 Ь + 4b 2).

Помощь школьнику онлайн , Математика для 7 класса скачать , календарно-тематическое планирование

А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Среди различных выражений, которые рассматриваются в алгебре, важное место занимают суммы одночленов. Приведем примеры таких выражений:
\(5a^4 - 2a^3 + 0,3a^2 - 4,6a + 8 \)
\(xy^3 - 5x^2y + 9x^3 - 7y^2 + 6x + 5y - 2 \)

Сумму одночленов называют многочленом. Слагаемые в многочлене называют членами многочлена. Одночлены также относят к многочленам, считая одночлен многочленом, состоящим из одного члена.

Например, многочлен
\(8b^5 - 2b \cdot 7b^4 + 3b^2 - 8b + 0,25b \cdot (-12)b + 16 \)
можно упростить.

Представим все слагаемые в виде одночленов стандартного вида:
\(8b^5 - 2b \cdot 7b^4 + 3b^2 - 8b + 0,25b \cdot (-12)b + 16 = \)
\(= 8b^5 - 14b^5 + 3b^2 -8b -3b^2 + 16 \)

Приведем в полученном многочлене подобные члены:
\(8b^5 -14b^5 +3b^2 -8b -3b^2 + 16 = -6b^5 -8b + 16 \)
Получился многочлен, все члены которого являются одночленами стандартного вида, причем среди них нет подобных. Такие многочлены называют многочленами стандартного вида .

За степень многочлена стандартного вида принимают наибольшую из степеней его членов. Так, двучлен \(12a^2b - 7b \) имеет третью степень, а трехчлен \(2b^2 -7b + 6 \) - вторую.

Обычно члены многочленов стандартного вида, содержащих одну переменную, располагают в порядке убывания показателей ее степени. Например:
\(5x - 18x^3 + 1 + x^5 = x^5 - 18x^3 + 5x + 1 \)

Сумму нескольких многочленов можно преобразовать (упростить) в многочлен стандартного вида.

Иногда члены многочлена нужно разбить на группы, заключая каждую группу в скобки. Поскольку заключение в скобки - это преобразование, обратное раскрытию скобок, то легко сформулировать правила раскрытия скобок:

Если перед скобками ставится знак «+», то члены, заключаемые в скобки, записываются с теми же знаками.

Если перед скобками ставится знак «-», то члены, заключаемые в скобки, записываются с противоположными знаками.

Преобразование (упрощение) произведения одночлена и многочлена

С помощью распределительного свойства умножения можно преобразовать (упростить) в многочлен произведение одночлена и многочлена. Например:
\(9a^2b(7a^2 - 5ab - 4b^2) = \)
\(= 9a^2b \cdot 7a^2 + 9a^2b \cdot (-5ab) + 9a^2b \cdot (-4b^2) = \)
\(= 63a^4b - 45a^3b^2 - 36a^2b^3 \)

Произведение одночлена и многочлена тождественно равно сумме произведений этого одночлена и каждого из членов многочлена.

Этот результат обычно формулируют в виде правила.

Чтобы умножить одночлен на многочлен, надо умножить этот одночлен на каждый из членов многочлена.

Мы уже неоднократно использовали это правило для умножения на сумму.

Произведение многочленов. Преобразование (упрощение) произведения двух многочленов

Вообще, произведение двух многочленов тождественно равно сумме произведении каждого члена одного многочлена и каждого члена другого.

Обычно пользуются следующим правилом.

Чтобы умножить многочлен на многочлен, надо каждый член одного многочлена умножить на каждый член другого и сложить полученные произведения.

Формулы сокращенного умножения. Квадраты суммы, разности и разность квадратов

С некоторыми выражениями в алгебраических преобразованиях приходится иметь дело чаще, чем с другими. Пожалуй, наиболее часто встречаются выражения \((a + b)^2, \; (a - b)^2 \) и \(a^2 - b^2 \), т. е. квадрат суммы, квадрат разности и разность квадратов. Вы заметили, что названия указанных выражений как бы не закончены, так, например, \((a + b)^2 \) - это, конечно, не просто квадрат суммы, а квадрат суммы а и b. Однако квадрат суммы а и b встречается не так уж часто, как правило, вместо букв а и b в нем оказываются различные, иногда довольно сложные выражения.

Выражения \((a + b)^2, \; (a - b)^2 \) нетрудно преобразовать (упростить) в многочлены стандартного вида, собственно, вы уже встречались с таким заданием при умножении многочленов:
\((a + b)^2 = (a + b)(a + b) = a^2 + ab + ba + b^2 = \)
\(= a^2 + 2ab + b^2 \)

Полученные тождества полезно запомнить и применять без промежуточных выкладок. Помогают этому краткие словесные формулировки.

\((a + b)^2 = a^2 + b^2 + 2ab \) - квадрат суммы равен сумме квадратов и удвоенного произведения.

\((a - b)^2 = a^2 + b^2 - 2ab \) - квадрат разности равен сумме квадратов без удвоенного произведения.

\(a^2 - b^2 = (a - b)(a + b) \) - разность квадратов равна произведению разности на сумму.

Эти три тождества позволяют в преобразованиях заменять свои левые части правыми и обратно - правые части левыми. Самое трудное при этом - увидеть соответствующие выражения и понять, чем в них заменены переменные а и b. Рассмотрим несколько примеров использования формул сокращенного умножения.

Формулы или правила сокращенного умножения используются в арифметике, а точнее - в алгебре, для более быстрого процесса вычисления больших алгебраических выражений. Сами же формулы получены из существующих в алгебре правил для умножения нескольких многочленов.

Использование данных формул обеспечивает достаточно оперативное решение различных математических задач, а также помогает осуществлять упрощение выражений. Правила алгебраических преобразований позволяют выполнять некоторые манипуляции с выражениями, следуя которым можно получить в левой части равенства выражение, стоящее в правой части, или преобразовать правую часть равенства (чтобы получить выражение, стоящее в левой части после знака равенства).

Удобно знать формулы, применяемые для сокращенного умножения, на память, так как они нередко используются при решении задач и уравнений. Ниже перечислены основные формулы, входящие в данный список, и их наименование.

Квадрат суммы

Чтобы вычислить квадрат суммы, необходимо найти сумму, состоящую из квадрата первого слагаемого, удвоенного произведения первого слагаемого на второе и квадрата второго. В виде выражения данное правило записывается следующим образом: (а + с)² = a² + 2ас + с².

Квадрат разности

Чтобы вычислить квадрат разности, необходимо вычислить сумму, состоящую из квадрата первого числа, удвоенного произведения первого числа на второе (взятое с противоположным знаком) и квадрата второго числа. В виде выражения данное правило выглядит следующим образом: (а - с)² = а² - 2ас + с².

Разность квадратов

Формула разности двух чисел, возведенных в квадрат, равна произведению суммы этих чисел на их разность. В виде выражения данное правило выглядит следующим образом: a² - с² = (a + с)·(a - с).

Куб суммы

Чтобы вычислить куб суммы двух слагаемых, необходимо вычислить сумму, состоящую из куба первого слагаемого, утроенного произведения квадрата первого слагаемого и второго, утроенного произведения первого слагаемого и второго в квадрате, а также куба второго слагаемого. В виде выражения данное правило выглядит следующим образом: (а + с)³ = а³ + 3а²с + 3ас² + с³.

Сумма кубов

Согласно формуле, приравнивается к произведению суммы данных слагаемых на их неполный квадрат разности. В виде выражения данное правило выглядит следующим образом: а³ + с³ = (а + с)·(а² - ас + с²).

Пример. Необходимо вычислить объем фигуры, которая образована сложением двух кубов. Известны лишь величины их сторон.

Если значения сторон небольшие, то выполнить вычисления просто.

Если же длины сторон выражаются в громоздких числах, то в этом случае проще применить формулу "Сумма кубов", которая значительно упростит вычисления.

Куб разности

Выражение для кубической разности звучит так: как сумма третьей степени первого члена, утроенного отрицательного произведения квадрата первого члена на второй, утроенного произведения первого члена на квадрат второго и отрицательного куба второго члена. В виде математического выражения куб разности выглядит следующим образом: (а - с)³ = а³ - 3а²с + 3ас² - с³.

Разность кубов

Формула разности кубов отличается от суммы кубов лишь одним знаком. Таким образом, разность кубов - формула, равная произведению разности данных чисел на их неполный квадрат суммы. В виде математического выражения разность кубов выглядит следующим образом: а 3 - с 3 = (а - с)(а 2 + ас + с 2).

Пример. Необходимо вычислить объем фигуры, которая останется после вычитания из объема синего куба объемной фигуры желтого цвета, которая также является кубом. Известна лишь величина стороны маленького и большого куба.

Если значения сторон небольшие, то вычисления довольно просты. А если длины сторон выражаются в значительных числах, то стоит применить формулу, озаглавленную "Разность кубов" (или "Куб разности"), которае значительно упростит вычисления.

Формулы сокращенного выражения очень часто применяются на практике, так что их все желательно выучить наизусть. До этого момента нам будет служить верой и правдой , которую мы рекомендуем распечатать и все время держать перед глазами:

Первые четыре формулы из составленной таблицы формул сокращенного умножения позволяют возводить в квадрат и куб сумму или разность двух выражений. Пятая предназначена для краткого умножения разности и суммы двух выражений. А шестая и седьмая формулы используются для умножения суммы двух выражений a и b на их неполный квадрат разности (так называют выражение вида a 2 −a·b+b 2 ) и разности двух выражений a и b на неполный квадрат их суммы (a 2 +a·b+b 2 ) соответственно.

Стоит отдельно заметить, что каждое равенство в таблице представляет собой тождество . Этим объясняется, почему формулы сокращенного умножения еще называют тождествами сокращенного умножения.

При решении примеров, особенно в которых имеет место разложение многочлена на множители , ФСУ часто используют в виде с переставленными местами левыми и правыми частями:


Три последних тождества в таблице имеют свои названия. Формула a 2 −b 2 =(a−b)·(a+b) называется формулой разности квадратов , a 3 +b 3 =(a+b)·(a 2 −a·b+b 2 ) - формулой суммы кубов , а a 3 −b 3 =(a−b)·(a 2 +a·b+b 2 ) - формулой разности кубов . Обратите внимание, что соответствующим формулам с переставленными частями из предыдущей таблицы фсу мы никак не назвали.

Дополнительные формулы

В таблицу формул сокращенного умножения не помешает добавить еще несколько тождеств.

Сферы применения формул сокращенного умножения (фсу) и примеры

Основное предназначение формул сокращенного умножения (фсу) объясняется их названием, то есть, оно состоит в кратком умножении выражений. Однако сфера применения ФСУ намного шире, и не ограничивается кратким умножением. Перечислим основные направления.

Несомненно, центральное приложение формулы сокращенного умножения нашли в выполнении тождественных преобразований выражений . Наиболее часто эти формулы используются в процессе упрощения выражений .

Пример.

Упростите выражение 9·y−(1+3·y) 2 .

Решение.

В данном выражении возведение в квадрат можно выполнить сокращенно, имеем 9·y−(1+3·y) 2 =9·y−(1 2 +2·1·3·y+(3·y) 2) . Остается лишь раскрыть скобки и привести подобные члены: 9·y−(1 2 +2·1·3·y+(3·y) 2)= 9·y−1−6·y−9·y 2 =3·y−1−9·y 2 .