Скорость при прямолинейном движении с постоянным ускорением. Движение с постоянным ускорением Ускорение движение с постоянным ускорением единица ускорения

§ 12-й. Движение с постоянным ускорением

При равноускоренном движении справедливы следующие уравнения, которые мы приводим без вывода:

Как вы понимаете, векторная формула слева и две скалярные формулы справа равноправны. С точки зрения алгебры, скалярные формулы означают, что при равноускоренном движении проекции перемещения зависят от времени по квадратичному закону. Сравните это с характером проекций мгновенной скорости (см. § 12-з).

Зная, что  s x  = x – x o  и   s y  = y – y o   (см. § 12-е), из двух скалярных формул из правой верхней колонки получим уравнения для координат:

Поскольку ускорение при равноускоренном движении тела постоянно, то координатные оси всегда можно расположить так, чтобы вектор ускорения был направлен параллельно одной оси, например оси Y. Следовательно, уравнение движения вдоль оси X заметно упростится:

x  =  x o + υ ox  t  + (0) и y  =  y o + υ oy  t  + ½ a y  t²

Обратите внимание, что левое уравнение совпадает с уравнением равномерного прямолинейного движения (см. § 12-ж). Это означает, что равноускоренное движение может «складываться» из равномерного движения вдоль одной оси и равноускоренного движения вдоль другой. Подтверждением этому служит опыт с ядром на яхте (см. § 12-б).

Задача . Вытянув руки, девочка подбросила шар. Он поднялся на 80 cм и вскоре упал к ногам девочки, пролетев 180 cм. С какой скоростью шар был подброшен и какую скорость шар имел при ударе о землю?

Возведём в квадрат обе части уравнения для проекции на ось Y мгновенной скорости: υ y  =  υ oy + a y  t  (см. § 12-и). Получим равенство:

υ y ²  =  ( υ oy + a y  t )²  =  υ oy ² + 2 υ oy  a y  t + a y ² t²

Вынесем за скобки множитель  2 a y   только для двух правых слагаемых:

υ y ²  =  υ oy ² + 2 a y  ( υ oy  t + ½ a y  t² )

Заметим, что в скобках получилась формула для вычисления проекции перемещения:  s y = υ oy  t + ½ a y  t². Заменяя её на s y , получим:

Решение. Сделаем чертёж: ось Y направим вверх, а начало координат поместим на земле у ног девочки. Применим выведенную нами формулу для квадрата проекции скорости сначала в верхней точке подъёма шара:

0 = υ oy ² + 2·(–g)·(+h) ⇒ υ oy = ±√¯2gh = +4 м/с

Затем при начале движения из верхней точки вниз:

υ y ² = 0 + 2·(–g)·(–H) ⇒ υ y = ±√¯2gh = –6 м/с

Ответ: шар был брошен вверх со скоростью 4 м/с, а в момент приземления имел скорость 6 м/с, направленную против оси Y.

Примечание. Надеемся, вы понимаете, что формула для квадрата проекции мгновенной скорости будет верна по аналогии и для оси X.

Урок 4. Ускорение. Скорость при движении с постоянным ускорением.

Цель : сформулировать признаки движения тела с постоянным ускорением.

План : 1) Организационный момент. Актуализация знаний. Проверка домашнего задания.

3) Закрепление изученного. Итог урока. Задание и объяснение домашней работы. Решение задач

Ход урока:

1)Организационный момент. Актуализация знаний.

Вопросы

    При равномерном прямолинейном движении мгновенная скорость совпадает со средней скоростью. Почему?

    Почему при равномерном прямолинейном движении за любые равные промежутки времени тело перемещается на одно и то же расстояние.

    Как по графику зависимости скорости от времени определяют перемещение тела при равномерном прямолинейном движении?

    Как угол наклона графика равномерного прямолинейного движения зависит от скорости?

2) Изучение нового материала.

Сегодня на уроке мы узнаем: физический смысл ускорения, графики движения с постоянным ускорением.


При движении тел их скорости обычно меняются либо по модулю, либо по направлению, либо одновременно и по модулю, и по направлению.

Пример 1 (видеофрагмент)


Пример 2 (видеофрагмент)


Пример 3 (видеофрагмент)


Величину, характеризующую быстроту изменения скорости, называют ускорением.

Ускорением тела называется предел отношения изменения скорости к промежутку времени , в течение которого это изменение произошло, при стремлении к нулю.

В Международной системе (СИ) за единицу ускорения принимают ускорение такого равнопеременного движения, при котором скорость движущегося тела за 1 с изменяется на 1 . Эту единицу называют 1 метр на секунду в квадрате и обозначают 1


Исследование ускоренного и замедленного движения шарика (интерактивная модель).

Равноускоренное движение (тело разгоняется), если , а = const.

При замедленном движении (тело тормозит), если , а = const.


Исследование графика скорости равноускоренного движения (интерактивная модель)


Задание 1. Заполнить таблицу.

Графики скорости будут отображать зависимость скорости от времени.

Проекции скорости. При вычислении ускорения используются проекции векторов скорости и ускорения на ось Х 3) Закрепление изученного. Итог урока. Задание и объяснение домашней работы.

Домашняя работа. §11, 12, 13, вопросы, упражнение 3(1,2)


1. Велосипедист, едущий со скоростью 18 км/ч, начинает спускаться с горы. Определить скорость велосипедиста через 6 с, если ускорение равно 0,8 м/с 2 .


2. Поезд через 20 с после начала движения приобретает скорость 90 м/с. Через сколько времени от начала движения скорость поезда станет равна 3 м/с?


3. Скорость автомобиля за 10 с уменьшилась с 10 до 6 м/с. Написать формулу зависимости V (t) скорости от времени, построить график этой зависимости и по графику определить скорость через 20 с.


4. Как направлено ускорение лифта, когда он:

а) начинает двигаться с первого этажа?

б) тормозит на верхнем этаже?

в) тормозит на третьем этаже, двигаясь вниз?

г) начинает движение на третьем этаже, двигаясь вверх?

Движение лифта при разгоне и торможении считайте равноускоренным.


5. Зависимость проекции скорости от времени для первого тела выражается в единицах СИ формулой , а для второго – формулой .

а) Изобразите графики для каждого тела.

б) В какой момент скорости тел равны (по модулю и направлению)?

в) В какие моменты скорости тел равны по модулю?

Ускорение. Прямолинейное движение с постоянным ускорением. Мгновеннная скорость.

Ускорение показывает, как быстро меняется скорость тела.

t 0 = 0c v 0 = 0 м/с Скорость изменилась на v = v 2 - v 1 в течение

t 1 = 5c v 1 = 2 м/ с промежутка времени = t 2 - t 1 . Значит за 1 с скорость

t 2 = 10c v 2 = 4 м/с тела увеличится на = .

t 3 = 15c v 3 = 6 м/с = или = . (1 м/с 2)

Ускорение – векторная величина, равная отношению изменения скорости к промежутку времени, в течение которого это изменение произошло.

Физический смысл : а = 3 м/с 2 – это значит, что за 1 с модуль скорости меняется на 3 м/с.

Если тело разгоняется а>0, если тормозит а


Аt = ; = + аt мгновенная скорость тела в любой момент времени. (Функция v(t)).

Перемещение при равноускоренном движении. Уравнение движения

Д
ля равномерного движения S=v*t, где v и t являются сторонами прямоугольника под графиком скорости. Т.е. перемещение = площади фигуры под графиком скорости.


Аналогично можно найти перемещение при равноускоренном движении. Нужно всего лишь найти отдельно площадь прямоугольника, треугольника и сложить их. Площадь прямоугольника v 0 t, площадь треугольника (v-v 0)t/2, где мы делаем замену v – v 0 = аt . Получим s = v 0 t + аt 2 /2

s = v 0 t + аt 2 /2

Формула перемещения при равноускоренном движении

Учитывая, что вектор s = х-х 0 , получим х-х 0 = v 0 t + аt 2 /2 или вынесем начальную координату вправо х = х 0 + v 0 t + аt 2 /2

х = х 0 + v 0 t + аt 2 /2

По этой формуле можно найти координату ускоренно движущегося тела в любой момент времени

При равнозамедленном движении перед буквой «а» в формулах знак + можно заменить на -

При равноускоренном движении справедливы следующие уравнения, которые мы приводим без вывода:

Как вы понимаете, векторная формула слева и две скалярные формулы справа равноправны. С точки зрения алгебры, скалярные формулы означают, что при равноускоренном движении проекции перемещения зависят от времени по квадратичному закону. Сравните это с характером проекций мгновенной скорости (см. § 12-з).

Зная, что  sx = x – xo  и   sy = y – yo  (см. § 12-е), из двух скалярных формул из правой верхней колонки получим уравнения для координат:

Поскольку ускорение при равноускоренном движении тела постоянно, то координатные оси всегда можно расположить так, чтобы вектор ускорения был направлен параллельно одной оси, например оси Y. Следовательно, уравнение движения вдоль оси X заметно упростится:

x  =  xo + υox t  + (0) и y  =  yo + υoy t  + ½ ay t²

Обратите внимание, что левое уравнение совпадает с уравнением равномерного прямолинейного движения (см. § 12-ж). Это означает, что равноускоренное движение может «складываться» из равномерного движения вдоль одной оси и равноускоренного движения вдоль другой. Подтверждением этому служит опыт с ядром на яхте (см. § 12-б).

Задача . Вытянув руки, девочка подбросила шар. Он поднялся на 80 cм и вскоре упал к ногам девочки, пролетев 180 cм. С какой скоростью шар был подброшен и какую скорость шар имел при ударе о землю?

Возведём в квадрат обе части уравнения для проекции на ось Y мгновенной скорости: υy  =  υoy + ay t  (см. § 12-и). Получим равенство:

υy²  =  ( υoy + ay t )²  =  υoy² + 2 υoy ay t + ay² t²

Вынесем за скобки множитель  2 ay  только для двух правых слагаемых:

υy²  =  υoy² + 2 ay ( υoy t + ½ ay t² )

Заметим, что в скобках получилась формула для вычисления проекции перемещения:  sy = υoy t + ½ ay t². Заменяя её на sy , получим:

Решение. Сделаем чертёж: ось Y направим вверх, а начало координат поместим на земле у ног девочки. Применим выведенную нами формулу для квадрата проекции скорости сначала в верхней точке подъёма шара:

0 = υoy² + 2·(–g)·(+h) ⇒ υoy = ±√¯2gh = +4 м/с

Затем при начале движения из верхней точки вниз:

υy² = 0 + 2·(–g)·(–H) ⇒ υy = ±√¯2gh = –6 м/с

Ответ: шар был брошен вверх со скоростью 4 м/с, а в момент приземления имел скорость 6 м/с, направленную против оси Y.

Примечание. Надеемся, вы понимаете, что формула для квадрата проекции мгновенной скорости будет верна по аналогии и для оси X:

Если движение одномерное, то есть происходит только вдоль одной оси, можно пользоваться любой из двух формул в рамках.