Условный экстремум функции z x y. Наибольшее и наименьшее значение функции в замкнутой области

УСЛОВНЫЙ ЭКСТРЕМУМ

Минимальное или максимальное значение, достигаемое данной функцией (или функционалом) при условии, что нек-рые другие функции (функционалы) принимают значения из заданного допустимого множества. Если условия, ограничивающие в указанном смысле изменения независимых переменных (функций), отсутствуют, то говорят о безусловном экстремуме.
Классич. задачей на У. э. является задача определения минимума функции многих переменных

При условии, что нек-рые другие функции принимают заданные значения:

В этой задаче G, к-рому должны принадлежать значения вектор-функции g= (g 1 , ...,g m ), входящей в дополнительные условия (2), есть фиксированная точка c= (c 1 , ..., с т )в m-мерном евклидовом пространстве
Если в (2) наряду со знаком равенства допускаются знаки неравенства

То это приводит к задаче нелинейного программирования (1), (3). В задаче (1), (3) множество Gдопустимых значений вектор-функции gпредставляет собой нек-рый криволинейный , принадлежащий (n-m 1)-мерной гиперповерхности, задаваемой т 1 , m 1 условиями типа равенства (3). Границы указанного криволинейного многогранника строятся с учетом п-m 1 неравенств, входящих в (3).
Частным случаем задачи (1), (3) на У. в. является задача линейного программирования, в к-рой все рассматриваемые функции f и g i являются линейными по x l , ... , х п. В задаче линейного программирования множество Gдопустимых значений вектор-функции g, входящей в условия, ограничивающие область изменения переменных x 1 , .....x n , представляет собой , принадлежащий (п-т 1)-мерной гиперплоскости, задаваемой m 1 условиями типа равенства в (3).
Аналогичным образом большинство задач оптимизации функционалов, представляющих нрактич. интерес, сводится к задачам на У. э. (см. Изопериметрическая задача, Кольца задача, Лагранжа задача, Манера задача ). Так же, как и в математич. программировании, основными задачами вариационного исчисления и теории оптимального управления являются задачи на У. э.
При решении задач на У. э., особенно при рассмотрении теоретич. вопросов, связанных с задачами на У. э., весьма полезным оказывается использование неопределенных Лагранжа множителей, позволяющих свести задачу на У. э. к задаче на безусловный и упростить необходимых условий оптимальности. Использование множителей Лагранжа лежит в основе большинства классич. методов решения задач на У. э.

Лит. : Xедли Дж., Нелинейное и , пер. с англ., М., 1967; Блисс Г. А., Лекции по вариационному исчислению, пер. с англ., М., 1950; Понтрягин Л. С. [и др.], Математическая оптимальных процессов, 2 изд., М., 1969.
И. Б. Вапнярский.

Математическая энциклопедия. - М.: Советская энциклопедия . И. М. Виноградов . 1977-1985 .

Смотреть что такое "УСЛОВНЫЙ ЭКСТРЕМУМ" в других словарях:

    Относительный экстремум, экстремум функции f (x1,..., xn + m) от п + т переменных в предположении, что эти переменные подчинены ещё т уравнениям связи (условиям): φk (x1,..., xn + m) = 0, 1≤ k ≤ m (*) (см. Экстремум).… …

    Пусть открытое множество и на заданы функции. Пусть. Эти уравнения называют уравнениями связей (терминология заимствованна из механики). Пусть на G определена функция … Википедия

    - (от лат. extremum крайнее) значение непрерывной функции f (x), являющееся или максимумом, или минимумом. Точнее: непрерывная в точке х0 функция f (x) имеет в x0 максимум (минимум), если существует окрестность (x0 + δ, x0 δ) этой точки,… … Большая советская энциклопедия

    У этого термина существуют и другие значения, см. Экстремум (значения). Экстремум (лат. extremum крайний) в математике максимальное или минимальное значение функции на заданном множестве. Точка, в которой достигается экстремум,… … Википедия

    Функция, используемая при решении задач на условный экстремум функций многих переменных и функционалов. С помощью Л. ф. записываются необходимые условия оптимальности в задачах на условный экстремум. При этом не требуется выражать одни переменные … Математическая энциклопедия

    Математическая дисциплина, посвященная отысканию экстремальных (наибольших и наименьших) значений функционалов переменных величин, зависящих от выбора одной или нескольких функций. В. и. является естественным развитием той главы… … Большая советская энциклопедия

    Переменные, с помощью к рых строится Лагранжа функция при исследовании задач на условный экстремум. Использование Л. м. и функции Лагранжа позволяет единообразным способом получать необходимые условия оптимальности в задачах на условный экстремум … Математическая энциклопедия

    Вариационное исчисление это раздел функционального анализа, в котором изучаются вариации функционалов. Самая типичная задача вариационного исчисления состоит в том, чтобы найти функцию, на которой заданный функционал достигает… … Википедия

    Раздел мате.матики, посвященный исследованию методов отыскания экстремумов функционалов, зависящих от выбора одной или нескольких функций при разного рода ограничениях (фазовых, дифференциальных, интегральных И т. п.), накладываемых на эти… … Математическая энциклопедия

    Вариационное исчисление это раздел математики, в котором изучаются вариации функционалов. Самая типичная задача вариационного исчисления состоит в том, чтобы найти функцию, на которой функционал достигает экстремального значения. Методы… … Википедия

Книги

  • Лекции по теории управления. Том 2. Оптимальное управление , В. Босс. Рассматривается классическая проблематика теории оптимального управления. Изложение начинается с базовых понятий оптимизации в конечномерных пространствах: условный и безусловный экстремум,…

Необходимое и достаточные условия экстремума функций двух переменных. Точка называется точкой минимума (максимума) функции если в некоторой окрестности точки функция определена и удовлетворяет неравенству (соответственно Точки максимума и минимума называются точками экстремума функции.

Необходимое условие экстремума. Если в точке экстремума функция имеет первые частные производные, то они обращаются в этой точке в нуль. Отсюда следует, что для отыскания точек экстремума такой функции следует решить систему уравнений Точки, координаты которых удовлетворяют этой системе, называются критическими точками функции. Среди них могут быть точки максимума, точки минимума, а также точки, не являющиеся точками экстремума.

Достаточные условия экстремума используются для выделения точек экстремума из множества критических точек и перечислены ниже.

Пусть функция имеет в критической точке непрерывные вторые частные производные. Если в этой точке выполняется

условие то она является точкой минимума при и точкой максимума при Если в критической точке то она не является точкой экстремума. В случае требуется более тонкое исследование характера критической точки, которая в этом случае может быть точкой экстремума, а может и не быть таковой.

Экстремумы функций трех переменных. В случае функции трех переменных определения точек экстремума дословно повторяют соответствующие определения для функции двух переменных. Ограничимся изложением порядка исследования функции на экстремум. Решая систему уравнений следует найти критические точки функции, а затем в каждой из критических точек вычислить величины

Если все три величины положительны, то рассматриваемая критическая точка является точкой минимума; если то данная критическая точка является точкой максимума.

Условный экстремум функции двух переменных. Точка называется точкой условного минимума (максимума) функции при условии если существует окрестность точки в которой функция определена и в которой (соответственно ) для всех точек координаты которых удовлетворяют уравнению

Для нахождения точек условного экстремума используют функцию Лагранжа

где число называется множителем Лагранжа. Решая систему трех уравнений

находят критические точки функции Лагранжа (а также значение вспомогательного множителя Л). В этих критических точках может быть условный экстремум. Приведенная система дает лишь необходимые условия экстремума, но не достаточные: ей могут удовлетворять координаты точек, не являющихся точками условного экстремума. Однако, исходя из существа задачи, часто удается установить характер критической точки.

Условный экстремум функции многих переменных. Рассмотрим функцию переменных при условии, что связаны уравнениями

Для начала рассмотрим случай функции двух переменных. Условным экстремумом функции $z=f(x,y)$ в точке $M_0(x_0;y_0)$ называется экстремум этой функции, достигнутый при условии, что переменные $x$ и $y$ в окрестности данной точки удовлетворяют уравнению связи $\varphi (x,y)=0$.

Название «условный» экстремум связано с тем, что на переменные наложено дополнительное условие $\varphi(x,y)=0$. Если из уравнения связи можно выразить одну переменную через другую, то задача определения условного экстремума сводится к задаче на обычный экстремум функции одной переменной. Например, если из уравнения связи следует $y=\psi(x)$, то подставив $y=\psi(x)$ в $z=f(x,y)$, получим функцию одной переменной $z=f\left(x,\psi(x)\right)$. В общем случае, однако, такой метод малопригоден, поэтому требуется введение нового алгоритма.

Метод множителей Лагранжа для функций двух переменных.

Метод множителей Лагранжа состоит в том, что для отыскания условного экстремума составляют функцию Лагранжа: $F(x,y)=f(x,y)+\lambda\varphi(x,y)$ (параметр $\lambda$ называют множителем Лагранжа). Необходимые условия экстремума задаются системой уравнений, из которой определяются стационарные точки:

$$ \left \{ \begin{aligned} & \frac{\partial F}{\partial x}=0;\\ & \frac{\partial F}{\partial y}=0;\\ & \varphi (x,y)=0. \end{aligned} \right. $$

Достаточным условием, из которого можно выяснить характер экстремума, служит знак $d^2 F=F_{xx}^{""}dx^2+2F_{xy}^{""}dxdy+F_{yy}^{""}dy^2$. Если в стационарной точке $d^2F > 0$, то функция $z=f(x,y)$ имеет в данной точке условный минимум, если же $d^2F < 0$, то условный максимум.

Есть и другой способ для определения характера экстремума. Из уравнения связи получаем: $\varphi_{x}^{"}dx+\varphi_{y}^{"}dy=0$, $dy=-\frac{\varphi_{x}^{"}}{\varphi_{y}^{"}}dx$, поэтому в любой стационарной точке имеем:

$$d^2 F=F_{xx}^{""}dx^2+2F_{xy}^{""}dxdy+F_{yy}^{""}dy^2=F_{xx}^{""}dx^2+2F_{xy}^{""}dx\left(-\frac{\varphi_{x}^{"}}{\varphi_{y}^{"}}dx\right)+F_{yy}^{""}\left(-\frac{\varphi_{x}^{"}}{\varphi_{y}^{"}}dx\right)^2=\\ =-\frac{dx^2}{\left(\varphi_{y}^{"} \right)^2}\cdot\left(-(\varphi_{y}^{"})^2 F_{xx}^{""}+2\varphi_{x}^{"}\varphi_{y}^{"}F_{xy}^{""}-(\varphi_{x}^{"})^2 F_{yy}^{""} \right)$$

Второй сомножитель (расположенный в скобке) можно представить в такой форме:

Красным цветом выделены элементы определителя $\left| \begin{array} {cc} F_{xx}^{""} & F_{xy}^{""} \\ F_{xy}^{""} & F_{yy}^{""} \end{array} \right|$, который является гессианом функции Лагранжа. Если $H > 0$, то $d^2F < 0$, что указывает на условный максимум. Аналогично, при $H < 0$ имеем $d^2F > 0$, т.е. имеем условный минимум функции $z=f(x,y)$.

Примечание относительно формы записи определителя $H$. показать\скрыть

$$ H=-\left|\begin{array} {ccc} 0 & \varphi_{x}^{"} & \varphi_{y}^{"}\\ \varphi_{x}^{"} & F_{xx}^{""} & F_{xy}^{""} \\ \varphi_{y}^{"} & F_{xy}^{""} & F_{yy}^{""} \end{array} \right| $$

В этой ситуации сформулированное выше правило изменится следующим образом: если $H > 0$, то функция имеет условный минимум, а при $H < 0$ получим условный максимум функции $z=f(x,y)$. При решении задач следует учитывать такие нюансы.

Алгоритм исследования функции двух переменных на условный экстремум

  1. Составить функцию Лагранжа $F(x,y)=f(x,y)+\lambda\varphi(x,y)$
  2. Решить систему $ \left \{ \begin{aligned} & \frac{\partial F}{\partial x}=0;\\ & \frac{\partial F}{\partial y}=0;\\ & \varphi (x,y)=0. \end{aligned} \right.$
  3. Определить характер экстремума в каждой из найденных в предыдущем пункте стационарных точек. Для этого применить любой из указанных способов:
    • Составить определитель $H$ и выяснить его знак
    • С учетом уравнения связи вычислить знак $d^2F$

Метод множителей Лагранжа для функций n переменных

Допустим, мы имеем функцию $n$ переменных $z=f(x_1,x_2,\ldots,x_n)$ и $m$ уравнений связи ($n > m$):

$$\varphi_1(x_1,x_2,\ldots,x_n)=0; \; \varphi_2(x_1,x_2,\ldots,x_n)=0,\ldots,\varphi_m(x_1,x_2,\ldots,x_n)=0.$$

Обозначив множители Лагранжа как $\lambda_1,\lambda_2,\ldots,\lambda_m$, составим функцию Лагранжа:

$$F(x_1,x_2,\ldots,x_n,\lambda_1,\lambda_2,\ldots,\lambda_m)=f+\lambda_1\varphi_1+\lambda_2\varphi_2+\ldots+\lambda_m\varphi_m$$

Необходимые условия наличия условного экстремума задаются системой уравнений, из которой находятся координаты стационарных точек и значения множителей Лагранжа:

$$\left\{\begin{aligned} & \frac{\partial F}{\partial x_i}=0; (i=\overline{1,n})\\ & \varphi_j=0; (j=\overline{1,m}) \end{aligned} \right.$$

Выяснить, условный минимум или условный максимум имеет функция в найденной точке, можно, как и ранее, посредством знака $d^2F$. Если в найденной точке $d^2F > 0$, то функция имеет условный минимум, если же $d^2F < 0$, - то условный максимум. Можно пойти иным путем, рассмотрев следующую матрицу:

Определитель матрицы $\left| \begin{array} {ccccc} \frac{\partial^2F}{\partial x_{1}^{2}} & \frac{\partial^2F}{\partial x_{1}\partial x_{2}} & \frac{\partial^2F}{\partial x_{1}\partial x_{3}} &\ldots & \frac{\partial^2F}{\partial x_{1}\partial x_{n}}\\ \frac{\partial^2F}{\partial x_{2}\partial x_1} & \frac{\partial^2F}{\partial x_{2}^{2}} & \frac{\partial^2F}{\partial x_{2}\partial x_{3}} &\ldots & \frac{\partial^2F}{\partial x_{2}\partial x_{n}}\\ \frac{\partial^2F}{\partial x_{3} \partial x_{1}} & \frac{\partial^2F}{\partial x_{3}\partial x_{2}} & \frac{\partial^2F}{\partial x_{3}^{2}} &\ldots & \frac{\partial^2F}{\partial x_{3}\partial x_{n}}\\ \ldots & \ldots & \ldots &\ldots & \ldots\\ \frac{\partial^2F}{\partial x_{n}\partial x_{1}} & \frac{\partial^2F}{\partial x_{n}\partial x_{2}} & \frac{\partial^2F}{\partial x_{n}\partial x_{3}} &\ldots & \frac{\partial^2F}{\partial x_{n}^{2}}\\ \end{array} \right|$, выделенной в матрице $L$ красным цветом, есть гессиан функции Лагранжа. Используем следующее правило:

  • Если знаки угловых миноров $H_{2m+1},\; H_{2m+2},\ldots,H_{m+n}$ матрицы $L$ совпадают с знаком $(-1)^m$, то исследуемая стационарная точка является точкой условного минимума функции $z=f(x_1,x_2,x_3,\ldots,x_n)$.
  • Если знаки угловых миноров $H_{2m+1},\; H_{2m+2},\ldots,H_{m+n}$ чередуются, причём знак минора $H_{2m+1}$ совпадает с знаком числа $(-1)^{m+1}$, то исследуемая стационарная точка является точкой условного максимума функции $z=f(x_1,x_2,x_3,\ldots,x_n)$.

Пример №1

Найти условный экстремум функции $z(x,y)=x+3y$ при условии $x^2+y^2=10$.

Геометрическая интерпретация данной задачи такова: требуется найти наибольшее и наименьшее значение аппликаты плоскости $z=x+3y$ для точек ее пересечения с цилиндром $x^2+y^2=10$.

Выразить одну переменную через другую из уравнения связи и подставить ее в функцию $z(x,y)=x+3y$ несколько затруднительно, поэтому будем использовать метод Лагранжа.

Обозначив $\varphi(x,y)=x^2+y^2-10$, составим функцию Лагранжа:

$$ F(x,y)=z(x,y)+\lambda \varphi(x,y)=x+3y+\lambda(x^2+y^2-10);\\ \frac{\partial F}{\partial x}=1+2\lambda x; \frac{\partial F}{\partial y}=3+2\lambda y. $$

Запишем систему уравнений для определения стационарных точек функции Лагранжа:

$$ \left \{ \begin{aligned} & 1+2\lambda x=0;\\ & 3+2\lambda y=0;\\ & x^2+y^2-10=0. \end{aligned} \right. $$

Если предположить $\lambda=0$, то первое уравнение станет таким: $1=0$. Полученное противоречие говорит о том, что $\lambda\neq 0$. При условии $\lambda\neq 0$ из первого и второго уравнений имеем: $x=-\frac{1}{2\lambda}$, $y=-\frac{3}{2\lambda}$. Подставляя полученные значения в третье уравнение, получим:

$$ \left(-\frac{1}{2\lambda} \right)^2+\left(-\frac{3}{2\lambda} \right)^2-10=0;\\ \frac{1}{4\lambda^2}+\frac{9}{4\lambda^2}=10; \lambda^2=\frac{1}{4}; \left[ \begin{aligned} & \lambda_1=-\frac{1}{2};\\ & \lambda_2=\frac{1}{2}. \end{aligned} \right.\\ \begin{aligned} & \lambda_1=-\frac{1}{2}; \; x_1=-\frac{1}{2\lambda_1}=1; \; y_1=-\frac{3}{2\lambda_1}=3;\\ & \lambda_2=\frac{1}{2}; \; x_2=-\frac{1}{2\lambda_2}=-1; \; y_2=-\frac{3}{2\lambda_2}=-3.\end{aligned} $$

Итак, система имеет два решения: $x_1=1;\; y_1=3;\; \lambda_1=-\frac{1}{2}$ и $x_2=-1;\; y_2=-3;\; \lambda_2=\frac{1}{2}$. Выясним характер экстремума в каждой стационарной точке: $M_1(1;3)$ и $M_2(-1;-3)$. Для этого вычислим определитель $H$ в каждой из точек.

$$ \varphi_{x}^{"}=2x;\; \varphi_{y}^{"}=2y;\; F_{xx}^{""}=2\lambda;\; F_{xy}^{""}=0;\; F_{yy}^{""}=2\lambda.\\ H=\left| \begin{array} {ccc} 0 & \varphi_{x}^{"} & \varphi_{y}^{"}\\ \varphi_{x}^{"} & F_{xx}^{""} & F_{xy}^{""} \\ \varphi_{y}^{"} & F_{xy}^{""} & F_{yy}^{""} \end{array} \right|= \left| \begin{array} {ccc} 0 & 2x & 2y\\ 2x & 2\lambda & 0 \\ 2y & 0 & 2\lambda \end{array} \right|= 8\cdot\left| \begin{array} {ccc} 0 & x & y\\ x & \lambda & 0 \\ y & 0 & \lambda \end{array} \right| $$

В точке $M_1(1;3)$ получим: $H=8\cdot\left| \begin{array} {ccc} 0 & x & y\\ x & \lambda & 0 \\ y & 0 & \lambda \end{array} \right|= 8\cdot\left| \begin{array} {ccc} 0 & 1 & 3\\ 1 & -1/2 & 0 \\ 3 & 0 & -1/2 \end{array} \right|=40 > 0$, поэтому в точке $M_1(1;3)$ функция $z(x,y)=x+3y$ имеет условный максимум, $z_{\max}=z(1;3)=10$.

Аналогично, в точке $M_2(-1;-3)$ найдем: $H=8\cdot\left| \begin{array} {ccc} 0 & x & y\\ x & \lambda & 0 \\ y & 0 & \lambda \end{array} \right|= 8\cdot\left| \begin{array} {ccc} 0 & -1 & -3\\ -1 & 1/2 & 0 \\ -3 & 0 & 1/2 \end{array} \right|=-40$. Так как $H < 0$, то в точке $M_2(-1;-3)$ имеем условный минимум функции $z(x,y)=x+3y$, а именно: $z_{\min}=z(-1;-3)=-10$.

Отмечу, что вместо вычисления значения определителя $H$ в каждой точке, гораздо удобнее раскрыть его в общем виде. Дабы не загромождать текст подробностями, этот способ скрою под примечание.

Запись определителя $H$ в общем виде. показать\скрыть

$$ H=8\cdot\left|\begin{array}{ccc}0&x&y\\x&\lambda&0\\y&0&\lambda\end{array}\right| =8\cdot\left(-\lambda{y^2}-\lambda{x^2}\right) =-8\lambda\cdot\left(y^2+x^2\right). $$

В принципе, уже очевидно, какой знак имеет $H$. Так как ни одна из точек $M_1$ или $M_2$ не совпадает с началом координат, то $y^2+x^2>0$. Следовательно, знак $H$ противоположен знаку $\lambda$. Можно и довести вычисления до конца:

$$ \begin{aligned} &H(M_1)=-8\cdot\left(-\frac{1}{2}\right)\cdot\left(3^2+1^2\right)=40;\\ &H(M_2)=-8\cdot\frac{1}{2}\cdot\left((-3)^2+(-1)^2\right)=-40. \end{aligned} $$

Вопрос о характере экстремума в стационарных точках $M_1(1;3)$ и $M_2(-1;-3)$ можно решить и без использования определителя $H$. Найдем знак $d^2F$ в каждой стационарной точке:

$$ d^2 F=F_{xx}^{""}dx^2+2F_{xy}^{""}dxdy+F_{yy}^{""}dy^2=2\lambda \left(dx^2+dy^2\right) $$

Отмечу, что запись $dx^2$ означает именно $dx$, возведённый в вторую степень, т.е. $\left(dx \right)^2$. Отсюда имеем: $dx^2+dy^2>0$, посему при $\lambda_1=-\frac{1}{2}$ получим $d^2F < 0$. Следовательно, функция имеет в точке $M_1(1;3)$ условный максимум. Аналогично, в точке $M_2(-1;-3)$ получим условный минимум функции $z(x,y)=x+3y$. Отметим, что для определения знака $d^2F$ не пришлось учитывать связь между $dx$ и $dy$, ибо знак $d^2F$ очевиден без дополнительных преобразований. В следующем примере для определения знака $d^2F$ уже будет необходимо учесть связь между $dx$ и $dy$.

Ответ : в точке $(-1;-3)$ функция имеет условный минимум, $z_{\min}=-10$. В точке $(1;3)$ функция имеет условный максимум, $z_{\max}=10$

Пример №2

Найти условный экстремум функции $z(x,y)=3y^3+4x^2-xy$ при условии $x+y=0$.

Первый способ (метод множителей Лагранжа)

Обозначив $\varphi(x,y)=x+y$ составим функцию Лагранжа: $F(x,y)=z(x,y)+\lambda \varphi(x,y)=3y^3+4x^2-xy+\lambda(x+y)$.

$$ \frac{\partial F}{\partial x}=8x-y+\lambda; \; \frac{\partial F}{\partial y}=9y^2-x+\lambda.\\ \left \{ \begin{aligned} & 8x-y+\lambda=0;\\ & 9y^2-x+\lambda=0; \\ & x+y=0. \end{aligned} \right. $$

Решив систему, получим: $x_1=0$, $y_1=0$, $\lambda_1=0$ и $x_2=\frac{10}{9}$, $y_2=-\frac{10}{9}$, $\lambda_2=-10$. Имеем две стационарные точки: $M_1(0;0)$ и $M_2 \left(\frac{10}{9};-\frac{10}{9} \right)$. Выясним характер экстремума в каждой стационарной точке с использованием определителя $H$.

$$ H=\left| \begin{array} {ccc} 0 & \varphi_{x}^{"} & \varphi_{y}^{"}\\ \varphi_{x}^{"} & F_{xx}^{""} & F_{xy}^{""} \\ \varphi_{y}^{"} & F_{xy}^{""} & F_{yy}^{""} \end{array} \right|= \left| \begin{array} {ccc} 0 & 1 & 1\\ 1 & 8 & -1 \\ 1 & -1 & 18y \end{array} \right|=-10-18y $$

В точке $M_1(0;0)$ $H=-10-18\cdot 0=-10 < 0$, поэтому $M_1(0;0)$ есть точка условного минимума функции $z(x,y)=3y^3+4x^2-xy$, $z_{\min}=0$. В точке $M_2\left(\frac{10}{9};-\frac{10}{9}\right)$ $H=10 > 0$, посему в данной точке функция имеет условный максимум, $z_{\max}=\frac{500}{243}$.

Исследуем характер экстремума в каждой из точек иным методом, основываясь на знаке $d^2F$:

$$ d^2 F=F_{xx}^{""}dx^2+2F_{xy}^{""}dxdy+F_{yy}^{""}dy^2=8dx^2-2dxdy+18ydy^2 $$

Из уравнения связи $x+y=0$ имеем: $d(x+y)=0$, $dx+dy=0$, $dy=-dx$.

$$ d^2 F=8dx^2-2dxdy+18ydy^2=8dx^2-2dx(-dx)+18y(-dx)^2=(10+18y)dx^2 $$

Так как $ d^2F \Bigr|_{M_1}=10 dx^2 > 0$, то $M_1(0;0)$ является точкой условного минимума функции $z(x,y)=3y^3+4x^2-xy$. Аналогично, $d^2F \Bigr|_{M_2}=-10 dx^2 < 0$, т.е. $M_2\left(\frac{10}{9}; -\frac{10}{9} \right)$ - точка условного максимума.

Второй способ

Из уравнения связи $x+y=0$ получим: $y=-x$. Подставив $y=-x$ в функцию $z(x,y)=3y^3+4x^2-xy$, получим некоторую функцию переменной $x$. Обозначим эту функцию как $u(x)$:

$$ u(x)=z(x,-x)=3\cdot(-x)^3+4x^2-x\cdot(-x)=-3x^3+5x^2. $$

Таким образом задачу о нахождении условного экстремума функции двух переменных мы свели к задаче определения экстремума функции одной переменной.

$$ u_{x}^{"}=-9x^2+10x;\\ -9x^2+10x=0; \; x\cdot(-9x+10)=0;\\ x_1=0; \; y_1=-x_1=0;\\ x_2=\frac{10}{9}; \; y_2=-x_2=-\frac{10}{9}. $$

Получили точки $M_1(0;0)$ и $M_2\left(\frac{10}{9}; -\frac{10}{9}\right)$. Дальнейшее исследование известно из курса дифференциального исчисления функций одной переменой. Исследуя знак $u_{xx}^{""}$ в каждой стационарной точке или проверяя смену знака $u_{x}^{"}$ в найденных точках, получим те же выводы, что и при решении первым способом. Например, проверим знак $u_{xx}^{""}$:

$$u_{xx}^{""}=-18x+10;\\ u_{xx}^{""}(M_1)=10;\;u_{xx}^{""}(M_2)=-10.$$

Так как $u_{xx}^{""}(M_1)>0$, то $M_1$ - точка минимума функции $u(x)$, при этом $u_{\min}=u(0)=0$. Так как $u_{xx}^{""}(M_2)<0$, то $M_2$ - точка максимума функции $u(x)$, причём $u_{\max}=u\left(\frac{10}{9}\right)=\frac{500}{243}$.

Значения функции $u(x)$ при заданном условии связи совпадают с значениями функции $z(x,y)$, т.е. найденные экстремумы функции $u(x)$ и есть искомые условные экстремумы функции $z(x,y)$.

Ответ : в точке $(0;0)$ функция имеет условный минимум, $z_{\min}=0$. В точке $\left(\frac{10}{9}; -\frac{10}{9} \right)$ функция имеет условный максимум, $z_{\max}=\frac{500}{243}$.

Рассмотрим еще один пример, в котором характер экстремума выясним посредством определения знака $d^2F$.

Пример №3

Найти наибольшее и наименьшее значения функции $z=5xy-4$, если переменные $x$ и $y$ положительны и удовлетворяют уравнению связи $\frac{x^2}{8}+\frac{y^2}{2}-1=0$.

Составим функцию Лагранжа: $F=5xy-4+\lambda \left(\frac{x^2}{8}+\frac{y^2}{2}-1 \right)$. Найдем стационарные точки функции Лагранжа:

$$ F_{x}^{"}=5y+\frac{\lambda x}{4}; \; F_{y}^{"}=5x+\lambda y.\\ \left \{ \begin{aligned} & 5y+\frac{\lambda x}{4}=0;\\ & 5x+\lambda y=0;\\ & \frac{x^2}{8}+\frac{y^2}{2}-1=0;\\ & x > 0; \; y > 0. \end{aligned} \right. $$

Все дальнейшие преобразования осуществляются с учетом $x > 0; \; y > 0$ (это оговорено в условии задачи). Из второго уравнения выразим $\lambda=-\frac{5x}{y}$ и подставим найденное значение в первое уравнение: $5y-\frac{5x}{y}\cdot \frac{x}{4}=0$, $4y^2-x^2=0$, $x=2y$. Подставляя $x=2y$ в третье уравнение, получим: $\frac{4y^2}{8}+\frac{y^2}{2}-1=0$, $y^2=1$, $y=1$.

Так как $y=1$, то $x=2$, $\lambda=-10$. Характер экстремума в точке $(2;1)$ определим, исходя из знака $d^2F$.

$$ F_{xx}^{""}=\frac{\lambda}{4}; \; F_{xy}^{""}=5; \; F_{yy}^{""}=\lambda. $$

Так как $\frac{x^2}{8}+\frac{y^2}{2}-1=0$, то:

$$ d\left(\frac{x^2}{8}+\frac{y^2}{2}-1\right)=0; \; d\left(\frac{x^2}{8} \right)+d\left(\frac{y^2}{2} \right)=0; \; \frac{x}{4}dx+ydy=0; \; dy=-\frac{xdx}{4y}. $$

В принципе, здесь можно сразу подставить координаты стационарной точки $x=2$, $y=1$ и параметра $\lambda=-10$, получив при этом:

$$ F_{xx}^{""}=\frac{-5}{2}; \; F_{xy}^{""}=-10; \; dy=-\frac{dx}{2}.\\ d^2 F=F_{xx}^{""}dx^2+2F_{xy}^{""}dxdy+F_{yy}^{""}dy^2=-\frac{5}{2}dx^2+10dx\cdot \left(-\frac{dx}{2} \right)-10\cdot \left(-\frac{dx}{2} \right)^2=\\ =-\frac{5}{2}dx^2-5dx^2-\frac{5}{2}dx^2=-10dx^2. $$

Однако в других задачах на условный экстремум стационарных точек может быть несколько. В таких случаях лучше $d^2F$ представить в общем виде, а потом подставлять в полученное выражение координаты каждой из найденных стационарных точек:

$$ d^2 F=F_{xx}^{""}dx^2+2F_{xy}^{""}dxdy+F_{yy}^{""}dy^2=\frac{\lambda}{4}dx^2+10\cdot dx\cdot \frac{-xdx}{4y} +\lambda\cdot \left(-\frac{xdx}{4y} \right)^2=\\ =\frac{\lambda}{4}dx^2-\frac{5x}{2y}dx^2+\lambda \cdot \frac{x^2dx^2}{16y^2}=\left(\frac{\lambda}{4}-\frac{5x}{2y}+\frac{\lambda \cdot x^2}{16y^2} \right)\cdot dx^2 $$

Подставляя $x=2$, $y=1$, $\lambda=-10$, получим:

$$ d^2 F=\left(\frac{-10}{4}-\frac{10}{2}-\frac{10 \cdot 4}{16} \right)\cdot dx^2=-10dx^2. $$

Так как $d^2F=-10\cdot dx^2 < 0$, то точка $(2;1)$ есть точкой условного максимума функции $z=5xy-4$, причём $z_{\max}=10-4=6$.

Ответ : в точке $(2;1)$ функция имеет условный максимум, $z_{\max}=6$.

В следующей части рассмотрим применение метода Лагранжа для функций большего количества переменных.

Достаточное условие экстремума функции двух переменных

1. Пусть функция непрерывно дифференцируема в некоторой окрестности точки и имеет непрерывные частные производные второго порядка (чистые и смешанные).

2. Обозначим за определитель второго порядка

экстремум переменная лекционный функция

Теорема

Если точка с координатами является стационарной точкой для функции, то:

А) При она является точкой локального экстремума причем, при локального максимума, - локального минимума;

В) при точка не является точкой локального экстремума;

С) если, может быть и то, и другое.

Доказательство

Запишем формулу Тейлора для функции, ограничившись двумя членами:

Так как по условию теоремы точка является стационарной, то частные производные второго порядка равны нулю, т.е. и. Тогда

Обозначим

Тогда приращение функции примет вид:

В силу непрерывности частных производных второго порядка (чистых и смешанных) по условию теоремы в точке можно записать:

Где или; ,

1. Пусть и, т.е. или.

2. Приращение функции умножим и разделим на, получим:

3. Дополним выражение в фигурных скобках до полного квадрата суммы:

4. Выражение в фигурных скобках неотрицательно, так как

5. Поэтому если а значит, и, то и, следовательно, согласно определению, точка является точкой локального минимума.

6. Если а значит, и, то, согласно определению точка с координатами - точка локального максимума.

2. Рассмотрим квадратный трехчлен, его дискриминант, .

3. Если, то существуют такие точки, что многочлен

4. Полное приращение функции в точке в соответствии с выражением, полученным в I, запишем в виде:

5. В силу непрерывности частных производных второго порядка по условию теоремы в точке можно записать, что

следовательно, существует - окрестность точки, что, для любой точки квадратный трехчлен больше нуля:

6. Рассмотрим - окрестность точки.

Выберем любое значение, так что точка. Полагая, что в формуле приращения функции

Что, получим:

7. Так как, то.

8. Рассуждая аналогично для корня, получим, что в любой -окрестности точки существует точка для которой, следовательно, в окрестности точки не сохраняет знак, следовательно в точке экстремума нет.

Условный экстремум функции двух переменных

При отыскании экстремумов функции двух переменных часто возникают задачи, связанные с так называемым условным экстремумом. Это понятие можно разъяснить на примере функции двух переменных.

Пусть заданы функция и линия L на плоскости 0xy. Задача состоит в том, чтобы на линии L найти такую точку P (x, y), в которой значение функции является наибольшим или наименьшим по сравнению со значениями этой функции в точках линии L, находящихся вблизи точки P. Такие точки P называются точками условного экстремума функции на линии L. В отличие от обычной точки экстремума значение функции в точке условного экстремума сравнивается со значениями функции не во всех точках некоторой ее окрестности, а только в тех, которые лежат на линии L.

Совершенно ясно, что точка обычного экстремума (говорят также безусловного экстремума) является и точкой условного экстремума для любой линии, проходящей через эту точку. Обратное же, разумеется, неверно: точка условного экстремума может и не быть точкой обычного экстремума. Проиллюстрируем сказанное на примере.

Пример №1. Графиком функции является верхняя полусфера (рис. 2).

Рис. 2.

Эта функция имеет максимум в начале координат; ему соответствует вершина M полусферы. Если линия L есть прямая, проходящая через точки А и В (ее уравнение), то геометрически ясно, что для точек этой линии наибольшее значение функции достигается в точке, лежащей посередине между точками А и В. Это и есть точка условного экстремума (максимума) функции на данной линии; ей соответствует точка M 1 на полусфере, и из рисунка видно, что ни о каком обычном экстремуме здесь не может быть речи.

Отметим, что в заключительной части задачи об отыскании наибольшего и наименьшего значений функции в замкнутой области приходится находить экстремальные значения функции на границе этой области, т.е. на какой-то линии, и тем самым решать задачу на условный экстремум.

Определение 1. Говорят, что, где имеет в точке, удовлетворяющей уравнению, условный или относительный максимум (минимум): если для любой, удовлетворяющей уравнению, выполняется неравенство

Определение 2. Уравнение вида называется уравнением связи.

Теорема

Если функции и непрерывно дифференцируемы в окрестности точки, и частная производная, и точка является точкой условного экстремума функции относительно уравнения связи, то определитель второго порядка равен нулю:

Доказательство

1. Так как по условию теоремы частная производная, а значение функции, то в некотором прямоугольнике

определена неявная функция

Сложная функция двух переменных в точке будет иметь локальный экстремум, следовательно, или.

2. Действительно, согласно свойству инвариантности формулы дифференциала первого порядка

3. Уравнение связи можно представить в таком виде, значит

4. Умножим уравнение (2) на, а (3) на и сложим их

Следовательно, при

произвольном. ч.т.д.

Следствие

Поиск точек условного экстремума функции двух переменных на практике осуществляется путем решения системы уравнений

Так, в вышеприведенном примере №1 из уравнения связи имеем. Отсюда легко проверить, что достигает максимума при. Но тогда из уравнения связи. Получаем точку P, найденную геометрически.

Пример №2. Найти точки условного экстремума функции относительно уравнения связи.

Найдем частные производные заданной функции и уравнения связи:

Составим определитель второго порядка:

Запишем систему уравнений для отыскания точек условного экстремума:

значит, существует четыре точки условного экстремума функции с координатами: .

Пример №3. Найти точки экстремума функции.

Приравнивая частные производные к нулю: , находим одну стационарную точку - начало координат. Здесь,. Следовательно, и точка (0, 0) не является точкой экстремума. Уравнение есть уравнение гиперболического параболоида (Рис. 3) по рисунку видно, что точка (0, 0) не является точкой экстремума.

Рис. 3.

Наибольшее и наименьшее значение функции в замкнутой области

1. Пусть функция определена и непрерывна в ограниченной замкнутой области D.

2. Пусть в этой области функция имеет конечные частные производные, кроме отдельных точек области.

3. В соответствии с теоремой Вейерштрасса в этой области найдется точка, в которой функция примет наибольшее и наименьшее значение.

4. Если эти точки будут внутренними точками области D, то очевидно, в них будет максимум или минимум.

5. В этом случае интересующие нас точки находятся среди подозрительных точек на экстремум.

6. Однако наибольшее или наименьшее значение функция может принимать и на границе области D.

7. Для того, чтобы найти наибольшее (наименьшее) значение функции в области D, нужно найти все внутренние точки подозрительные на экстремум, вычислить значение функции в них, затем сравнить со значением функции в пограничных точках области, и наибольшее из всех найденных значений будет являться наибольшим в замкнутой области D.

8. Метод отыскания локального максимума или минимума рассматривался ранее в п. 1.2. и 1.3.

9. Остается рассмотреть метод отыскания наибольшего и наименьшего значения функции на границе области.

10. В случае функции двух переменных область обычно оказывается ограниченной кривой или нескольких кривыми.

11. Вдоль такой кривой (или нескольких кривых) переменные и либо зависят одна от другой, либо обе зависят от одного параметра.

12. Таким образом, на границе функция оказывается зависящей от одной переменной.

13. Метод отыскания наибольшего значения функции одной переменной был рассмотрен ранее.

14. Пусть граница области D задана параметрическими уравнениями:

Тогда на этой кривой функция двух переменных будет представлять собой сложную функцию от параметра: . Для такой функции наибольшее и наименьшее значение определяется по методике определения наибольшего и наименьшего значения для функции одной переменной.