Нуклеотид является структурным компонентом белков. Нуклеотиды

В организме человека находится большое количество органических соединений, без которых невозможно представить стабильное течение обменных процессов, поддерживающих жизнедеятельность всех . Одними из таких веществ являются нуклеотиды – это фосфорные эфиры нуклеозидов, которые играют важнейшую роль в передаче информационных данных, а также химических реакциях с выделением внутриклеточной энергии.

Как самостоятельные органические единицы формируют наполнительный состав всех нуклеиновых кислот и большинства коферментов. Рассмотрим более подробно, что такое нуклеозидфосфаты и какую роль они играют в человеческом организме.

Из чего состоит вещество нуклеотид. Оно считается крайне сложным эфиром, относящимся к группе кислот фосфора и нуклеозидов, которые по своим биохимическим свойствам относятся к числу N-гликозидов и содержат гетероциклические фрагменты, связанные с молекулами глюкозы и атомом азота.

В природе наиболее распространенными являются нуклеотиды ДНК.

Кроме этого, еще различают органические вещества с похожими характеристиками строения: рибонуклеотиды, а также дезоксирибонуклеотиды. Все они без исключения являются мономерными молекулами, относящимися к сложным по строению биологическим веществам полимерного типа.

Из них формируется РНК и ДНК всех живых существ, начиная от простейших микроорганизмов и вирусных инфекций, заканчивая человеческим организмом.

Остаток молекулярной структуры фосфора среди нуклеозидфосфатов, образует эфирную связь с двумя, тремя, а в некоторых случаях сразу с пятью гидроксильными группами. Практически все без исключения нуклеотиды относятся к числу эфирных веществ, которые образовались из остатков ортофосфорной кислоты, поэтому их связи устойчивы и не распадаются под воздействием неблагоприятных факторов внутренней и внешней среды.

Обратите внимание! Строение нуклеотидов всегда сложное и основывается на моноэфирах. Последовательность нуклеотидов может меняться под воздействием стрессовых факторов.

Биологическая роль

Влияние нуклеотидов на течение всех процессов в организме живых существ изучают ученые, которые исследуют молекулярное строение внутриклеточного пространства.

Исходя из лабораторных заключений, полученных по итогам многолетней работы ученых различных стран мира, выделяют следующую роль нуклеозидфосфатов:

  • универсальный источник жизненной энергии, за счет которой происходит питание клеток и соответственно поддерживается нормальная работа тканей, формирующих внутренние органы, биологические жидкости, эпителиальный покров, сосудистую систему;
  • являются транспортировщиками глюкозных мономеров в клетках любого типа (это одна из форм углеводного обмена, когда употребляемый сахар, под воздействием пищеварительных ферментов трансформируется в глюкозу, которая разносится в каждый уголок организма вместе с нуклеозидфосфатами);
  • выполняют функцию кофермента (витаминные и минеральные соединения, которые способствуют обеспечению клеток питательными веществами);
  • сложные и циклические мононуклеотиды являются биологическими проводниками гормонов, распространяющихся вместе с потоком крови, а также усиливают действие нейронных импульсов;
  • аллостерическим образом регулируют активность пищеварительных ферментов, вырабатываемых тканями поджелудочной железы.

Нуклеотиды входят в состав нуклеиновых кислот. Они соединены тремя и пятью связями фосфодиэфирного типа. Генетики и ученые, посвятившие свою жизнь молекулярной биологии, продолжают лабораторные исследования нуклеозидфосфатов, поэтому ежегодно мир узнает еще больше интересного о свойствах нуклеотидов.

Последовательность нуклеотидов – это разновидность генетического равновесия и баланса расположения аминокислот в структуре ДНК, своеобразный порядок размещения остатков эфира в составе нуклеиновых кислот.

Он определяется с помощью традиционного метода секвенирования отобранного для анализа биологического материала.

Т – тимин;

А – аденин;

G – гуанин;

С – цитозин;

R – GA аденин в комплексе с гуанином и основаниями пурина;

Y – TC пиримидиновые соединения;

K – GT нуклеотиды, содержащие кетогруппу;

M – AC входящие в аминогруппу;

S – GC мощные, отличающиеся тремя водородными соединениями;

W – AT неустойчивые, которые образуют только по две водородные связи.

Последовательность нуклеотидов может меняться, а обозначения латинскими буквами необходимы в тех случаях, когда порядок расположения эфирных соединений неизвестен, является несущественным либо уже имеются результаты первичных исследований.

Наибольшее количество вариантов и комбинаций нуклеозидфосфатов свойственно для ДНК. Для записи эфирных соединений РНК достаточно символов A, С, G, U. Последнее литерное обозначение является веществом уридин, которое встречается только в РНК. Последовательность символических обозначений всегда записывается без использования пробелов.

Полезное видео: нуклеиновые кислоты (ДНК и РНК)

Сколько нуклеотидов в ДНК

Для того, чтобы максимально подробно понимать, о чем идет речь, следует иметь четкое представление о самой ДНК. Это отдельный вид молекул, которые имеют вытянутую форму и состоят из структурных элементов, а именно – нуклеозидфосфатов. Какое количество нуклеотидов в ДНК? Существует 4 вида эфирных соединений данного типа, входящие в состав ДНК. Это аденин, тимин, цитозин и гуанин. Все они формируют единую цепочку, из которой и образовывается молекулярная структура ДНК.

Впервые строение ДНК было расшифровано в далеком 1953 году американскими учеными Френсисом Криком и Джеймсом Уотсоном. В одной молекуле дезоксирибонуклеиновой кислоты содержится по две цепочки нуклеозидфосфатов. Они размещены таким образом, что внешне напоминают спираль, закручивающуюся вокруг своей оси.

Обратите внимание! Количество нуклеотидов в ДНК неизменное и ограничивается только четырьмя видами — данное открытие приблизило человечество к расшифровке полного генетического кода человека.

При этом строение молекулы имеет одну важную особенность. Все нуклеотидные цепочки обладают свойством комплементарности. Это означает, что друг напротив друга размещаются только эфирные соединения определенного вида. Известно, что напротив тимина всегда расположен аденин. Напротив цитозина не может находится никакое другое вещество кроме гуанина. Такие нуклеотидные пары формируют принцип комплементарности и являются неразделимыми.

Масса и длина

С помощью сложных математических подсчетов и лабораторных исследований, ученым удалось установить точные физико-биологические свойства эфирных соединений, формирующих молекулярную структуру дезоксирибонуклеиновой кислоты.

Известно, что протяжная длина одного внутриклеточного остатка, состоящего из аминокислот в единой полипептидной цепи – 3,5 ангстрем. Средняя масса одного молекулярного остатка равна 110 а.е.м.

Кроме этого, еще выделяют мономеры нуклеотидного типа, которые сформированы не только из аминокислот, но имеют и эфирные составляющие. Это мономеры ДНК и РНК. Их линейная длина измеряется непосредственно внутри нуклеиновой кислоты и составляет не менее 3,4 ангстрем. Молекулярный вес одного нуклеозидфосфата находится в пределах 345 а.е.м. Это исходные данные, которые используются в практической лабораторной работе, посвященной опытам, генетическим исследованиям и прочей научной деятельности.

Медицинские обозначения

Генетика, как наука, развивалась еще в период, когда не было исследований строения ДНК человека и других живых существ на молекулярном уровне. Поэтому в период домолекулярной генетики нуклеотидные связи обозначались, как наименьший элемент в структуре молекулы ДНК. Как ранее, так и в настоящее время, эфирные вещества данного типа были подвержены . Она могла быть спонтанной или индуцированной, потому для обозначения нуклеозидфосфатов с поврежденной структурой еще используют термин «рекон».

Для определения понятия наступления возможной мутации в азотистых соединениях нуклеотидных связей, применяют термин «мутон». Данные обозначения больше востребованы в лабораторной работе с биологическим материалом. Также используются учеными генетиками, которые изучают устройство молекул ДНК, пути передачи наследственной информации, способы ее шифрования и возможные комбинации генов, получаемых в результате слияния генетического потенциала двух половых партнеров.

Полезное видео: строение нуклеотида

Вывод

Исходя из вышеизложенного можно сделать вывод, что нуклеозидфосфаты – это важная составляющая часть внутриклеточного устройства в организме человека и любого живого существа. За счет эфирных веществ данного типа передается большая часть не только генетической информации от родителей к потомкам, но и осуществляются обменные процессы в тканях всех жизненно важных органов.


Нуклеотиды.

Нуклеиновые кислоты

Нуклеотиды

Нуклеотиды – это природные соединения, состоящие из 1) остатков азотистого нуклеинового основания, 2) углеводного остатка и 3) фосфатной группы.

Азотистые нуклеиновые основания

Азотистые основания – это производные двух гетероциклов - пиримидина и пурина .

Пиримидиновые основания

Пуриновые основания

ТАУТОМЕРИЯ АЗОТИСТЫХ ОСНОВАНИЙ

а) лактам-лактимная

Аналогичная таутомерия возможна у тимина, цитозина и гуанина.

б) амино-иминная

Аналогичная таутомерия возможна у гуанина и цитозина.

Лактамы более устойчивы, чем лактимы, а амины более устойчивы, чем имины. Все основания in vitro и in vivo существуют и участвуют в обмене веществ в лактамных и аминоформах.

Производные и аналоги нуклеиновых оснований применяются в медицине как лекарственные вещества противоопухолевого действия:

Нуклеозиды

Нуклеозиды – это соединения, состоящие из остатков нуклеинового основания и углевода, связанных β- N -гликозидной связью.

Реакция образования нуклеозидов in vivo идет под действием ферментов.

В кислой среде (но не в нейтральной и не в щелочной) нуклеозиды гидролизуются, распадаясь на исходные основание и углевод. Пиримидиновые нуклеозиды гидролизуются труднее, пуриновые – легче.

Номенклатура нуклеозидов

Основание

Название

2"-Дезоксиуридин

2"-Дезокситимидин

2"-Дезоксицитиидин

Аденозин

2"-Дезоксиаденозин

Гуанозин

2"-Дезоксигуанозин


Нуклеотиды

Нуклеотиды – это нуклеозиды, содержащие фосфатную группу в 5"-положении (5"-фосфоридированные нуклеозиды).

Нуклеотиды образуются in vivo в результате ферментативного фосфорилирования нуклеозидов:

Нуклеотиды гидролизуются в кислой и в щелочной средах: при кислотном гидролизе образуются основание, углевод и фосфорная кислота, а щелочной гидролиз дает нуклеозид и фосфат натрия:

Номенклатура нуклеотидов

Основание

Название

Уридин-5"-монофосфат (УМФ),

уридиловая кислота

2"-Дезоксиуридин-5"-монофосфат

Тимидин-5"-монофосфат (ТМФ),

тимидиловая кислота

2"-Дезокситимидин-5"-монофосфат

Цитидин-5"-монофосфат (ЦМФ),

цитидиловая кислота

2"-Дезоксицитиидин-5"-монофосфат

Аденозин-5"-монофосфат (АМФ),

адениловая кислота

2"-Дезоксиаденозин-5"-монофосфат

Гаунозин-5"-монофосфат (ГМФ),

гуаниловая кислота

2"-Дезоксигуанозин-5"-монофосфат


Динуклеотиды

НАД и ФАД – коферменты, участвующие в ОВ реакциях переноса водорода в организме:

Аденозинтрифосфат (АТФ)

АТФ является аккумулятором и переносчиком энергии в биохимических реакциях.

Биологические реакции АТФ

1. Фосфорилирование – перенос фосфатных групп от АТФ на другие субстраты:

2. Гидролиз с выделением энергии, используемой в синтетазных реакциях:

Нуклеиновые кислоты

Нуклеиновые кислоты – это полинуклеотиды – полимеры, состоящие из нуклеотидных остатков, связанных сахарофосфатными сложноэфирными связями.

Схема строения полинуклеотидной цепи:

Виды НК : ДНК – содержат остатки 2 -дезоксирибозы, не содержат урацила;

Д Н К

Первичная структура ДНК

Первичная структура ДНК – это определенный порядок последовательности нуклеотидов в цепи:

В первичной структуре ядерной ДНК заложен генетический код. В процессе транскрипции он "переписывается" на информационную РНК, а затем происходит трансляция: в рибосоме на матрице информационной РНК синтезируется полипептидная цепь белка. Ключ генетического кода заключается в том, что один аминокислотный остаток в синтезируемой полипептидной цепи кодируется тремя нуклеотидными остатками (триплетом) в НК, и таким образом, с помощью 4 видов нуклеотидов кодируются 20 аминокислот.

Химические свойства нуклеиновых кислот

Сложноэфирные связи, соединяющие полинуклеотидные цепи, неустойчивы в кислой и щелочной средах, и НК в этих условиях подвергаются гидролизу:

КОМПЛЕМЕНТАРНОСТЬ АЗОТИСТЫХ ОСНОВАНИЙ

Комплементарность – это соответствие формы двух сложных линий, которые подходят друг к другу "как ключ к замку".

Комплементарные пары оснований:

В паре А-Т тимин может быть (при переходе ДНК→РНК) заменен урацилом, и пара становится А-У ("взаимозаменяемость" тимина и урацила).

Биологическое значение комплементарных взаимодействий заключается в том, что они обеспечивают точность передачи информации от одной НК к другой.

Вторичная структура ДНК

Представляет собой спираль, состоящую из двух комплементарных друг другу и антипараллельных полинуклеотидных цепей ("двойная спираль"):

Биологическая роль "двойной спирали":

1) Она обеспечивает сохранность генетической информации (ядерный нуклеопротеидный комплекс "ДНК-Гистоны");

2) Обеспечивает восстановление информации при повреждении ДНК (репарация после мутаций).

Р Н К

Виды РНК : рибосомальная, информационная, транспортная.

Рибосомальная РНК (р-РНК) – структурный материал рибосом (рибосомальный нуклеопротеидный клмплекс).

Информационная (матричная) РНК (и-РНК) – промежуточный этап в процессе трансформации информации "ДНК – белок". Она синтезируется на матрице ДНК и сама служит матрицей при синтезе белка в рибосоме. и-РНК сравнительно низкомолекулярна и не имеет развитой вторичной структуры.

Транспортная РНК (т-РНК) – низкомолекулярная РНК, выполняющая следующие функции: 1) определение "своей" аминокислоты (для каждой АК существует своя т-РНК); 2) связывание с АК и транспорт её к рибосоме; 3) определение места АК в растущей полипептидной цепи.

Транспортные РНК имеют вторичную структуру "клеверного листа":

Выступающий конец ССА-3 ОН – место связывания с карбоксильной группой АК.

Триплет нуклеотидов в крайней нижней точке – кодон, комплементарный соответствующему антикодону на и-РНК.

ЛИТЕРАТУРА:

Основная

1. Тюкавкина Н.А., Зурабян С.Э., Белобородов В.Л. и др. – Органическая химия (специальный курс), кн.2 – Дрофа, М., 2008 г., с. 157-178.

2. Н.А.Тюкавкина, Ю.И.Бауков – Биоорганическая химия – ДРОФА, М., 2007 г., с. 420-444.

4.2.1. Первичной структурой нуклеиновых кислот называется последовательность расположения мононуклеотидов в цепи ДНК или РНК . Первичная структура нуклеиновых кислот стабилизируется 3",5"-фосфодиэфирными связями. Эти связи образуются при взаимодействии гидроксильной группы в 3"-положении пентозного остатка каждого нуклеотида с фосфатной группой соседнего нуклеотида (рисунок 3.2),

Таким образом, на одном конце полинуклеотидной цепи имеется свободная 5"-фосфатная группа (5"-конец), а на другом - свободная гидроксильная группа в 3"-положении (3"-конец). Нуклеотидные последовательности принято записывать в направлении от 5"-конца к 3"-концу.

Рисунок 4.2. Структура динуклеотида, в состав которого входят аденозин-5"-монофосфат и цитидин-5"-монофосфат.

4.2.2. ДНК (дезоксирибонуклеиновая кислота) содержится в клеточном ядре и имеет молекулярную массу порядка 1011 Да. В состав её нуклеотидов входят азотистые основания аденин, гуанин, цитозин, тимин , углевод дезоксирибоза и остатки фосфорной кислоты. Содержание азотистых оснований в молекуле ДНК определяют правила Чаргаффа:

1) количество пуриновых оснований равно количеству пиримидиновых (А + Г = Ц + Т) ;

2) количество аденина и цитозина равно количеству тимина и гуанина соответственно (А = Т; Ц = Г) ;

3) ДНК, выделенные из клеток различных биологических видов, отличаются друг от друга величиной коэффициента специфичности:

(Г + Ц) /(А + Т)

Эти закономерности в строении ДНК объясняются следующими особенностями её вторичной структуры:

1) молекула ДНК построена из двух полинуклеотидных цепей, связанных между собой водородными связями и ориентированных антипараллельно (то есть 3"-конец одной цепи расположен напротив 5"-конца другой цепи и наоборот);

2) водородные связи образуются между комплементарными парами азотистых оснований. Аденину комплементарен тимин; эта пара стабилизируется двумя водородными связями. Гуанину комплементарен цитозин; эта пара стабилизируется тремя водородными связями (см. рисунок б) . Чем больше в молекуле ДНК пар Г-Ц, тем больше её устойчивость к действию высоких температур и ионизирующего излучения;

Рисунок 3.3. Водородные связи между комплементарными азотистыми основаниями.

3) обе цепи ДНК закручены в спираль, имеющую общую ось. Азотистые основания обращены внутрь спирали; кроме водородных, между ними возникают также гидрофобные взаимодействия. Рибозофосфатные части расположены по периферии, образуя остов спирали (см. рисунок 3.4).


Рисунок 3.4. Схема строения ДНК.

4.2.3. РНК (рибонуклеиновая кислота) содержится преимущественно в цитоплазме клетки и имеет молекулярную массу в пределах 104 - 106 Да. В состав её нуклеотидов входят азотистые основания аденин, гуанин, цитозин, урацил , углевод рибоза и остатки фосфорной кислоты. В отличие от ДНК, молекулы РНК построены из одной полинуклеотидной цепи, в которой могут находиться комплементарные друг другу участки (рисунок 3.5). Эти участки могут взаимодействовать между собой, образуя двойные спирали, чередующиеся с неспирализованными участками.

Рисунок 3.5. Схема строения транспортной РНК.

По особенностям структуры и функции различают три основных типа РНК:

1) матричные (информационные) РНК (мРНК) передают информацию о структуре белка из клеточного ядра на рибосомы;

2) транспортные РНК (тРНК) осуществляют транспорт аминокислот к месту синтеза белка;

3) рибосомальные РНК (рРНК) входят в состав рибосом, участвуют в синтезе белка.

Нуклеотиды

Остановимся подробнее на нуклеотидах. Известно, что нуклеотиды называются аденин, гуанин, тимин, цитозин и урацил – азотистые основания, они представлены на рисунке ниже.

Нуклеотиды – это мономеры нуклеиновых кислот. Нуклеиновые кислоты в эукариотических клетках находятся в ядре. Они есть у всех живых организмов (у тех, у кого нет ядра, нуклеиновые кислоты все равно есть – они находятся в центре клетки у бактерий и образуют нуклеоиды). Мономеры, из которых потом строятся нуклеиновые кислоты, состоят из азотистого основания, остатка сахара (дезоксирибоза или рибоза) и фосфата. Сахара вместе с азотистым основанием называются нуклеозидами (аденозин, гуанозин, тимидин, цитидин). Если к ним присоединены 1-, 2-, или 3-фосфорных остатка, то вся эта структура называется Соответственно, нуклеотизид монофосфатом, дифосфатом или трифосфатом или нуклеотидом (аденин, гуанин, тимин, цитозин).

Вот так модель АТФ выглядит в пространстве. Азотистое основание, входящее в состав ДНК делится на две группы – пиримидиновую и пуриновую. В состав ДНК входит аденин, тимин, цитозин и гуанин, в РНК вместо тимина урацил. Как известно, ДНК – это большой архив, в котором хранится информация, а РНК – это молекула, которая переносит информацию из ядра в цитоплазму для синтеза белков. С различием в функциях связаны различия в строении. РНК более химически активно из-за того, что ее сахар - рибоза – имеет в своем составе гидроксильную группу, а в дезоксирибозе кислорода нет. Из-за отсутствия кислорода ДНК более инертно, что важно для ее функции хранения информации, чтобы она не вступала ни в какие реакции.

Нуклеотиды способны взаимодействовать друг с другом, при этом «выбрасывается» два фосфора, и между соседними нуклеотидами образуется связь. В молекуле фуранозы молекулы углерода пронумерованы. С первым связано азотистое основание. Когда образуется цепочка нуклеотидов, связь осуществляется между пятым углеродом одной и третьим углеродом другой фосфорной кислоты. Поэтому в цепочке нуклеиновых кислот выделяют разные неравнозначные концы, относительно которых молекула не симметрична.

Комплементарные друг другу одноцепочечные молекулы нуклеиновой кислоты способны образовывать двуцепочечную структуру. Внутри этой спирали аденин образует пару с тимином, а гуанин - с цитозином. Встречается утверждение, что нуклеотиды подходят друг другу как осколки разбитого стекла, поэтому они и образуют пары. Но это утверждение неверно. Нуклеотиды способны образовывать пары как угодно. Единственная причина, по которой они соединяются так, и никак иначе, заключается в том, что угол между «хвостиками», которые идут к сахарам, совпадает только в этих парах, и, кроме того, совпадают их размеры. Никакая другая пара не образует такой конфигурации. А поскольку они совпадают, то их через сахаро-фосфатный остов можно связать друг с другом. Структуру двойной спирали открыли в 1953 году Джеймс Уотсон и Фрэнсис Крик.

При соединение друг с другом против 5’-конца одной нити находится 3’-конец другой нити. То есть нити идут в противоположных направлениях – говорят, что нити в ДНК антипараллельны.

На рисунке видна модель ДНК, видно, что аденин соединяется с тимином двумя водородными связями, а гуанин соединяется с цитозином тройной водородной связью. Если молекулу ДНК подогревать, то ясно, что две связи легче разорвать, чем три, это существенно для свойств ДНК.

В силу пространственного расположения сахаро-фосфатного остова и нуклеотидов, когда нуклеотиды накладывают один на другой и «сшивают» через сахаро-фосфатный остов, цепочка начинает заворачиваться, тем самым образуя знаменитую двойную спираль.

На рисунках представлены шариковые модели ДНК, где каждый атом обозначен шариком. Внутри спирали имеются бороздки: маленькая и большая. Через эти бороздки с ДНК взаимодействуют белки и распознают там последовательность нуклеотидов.

При нагревании ДНК водородные связи разрываются и нити в двойной спирали расплетаются. Процесс нагревания называется плавлением ДНК, при этом разрушаются связи между парами А-Т и Г-Ц.Чем больше в ДНК пар А-Т, тем менее прочно нити друг с другом связаны, тем легче ДНК расплавить. Переход из двухспиральной ДНК в одно-спиральную измеряется на спектрофотометрах по поглощению света при 260 нм. Температура плавления ДНК зависит от А-Т/Г-Ц состава и размера фрагмента молекулы. Ясно, что если фрагмент состоит из нескольких десятков нуклеотидов, то его гораздо легче расплавить, чем более длинные фрагменты.

У человека в гаплоидном геноме, то есть единичном наборе хромосом, 3 млрд. пар нуклеотидов, и их длина составляет 1,7 м, а клетка гораздо меньше, как вы догадываетесь. Для того, чтобы ДНК смогла в ней поместиться, она достаточно плотно свернута, и в эукариотической клетке свернуться ей помогают белки – гистоны. Гистоны имеют положительный заряд, а так как ДНК заряжена отрицательно, то гистоны обладают сродством к ДНК. Упакованная при помощи гистонов ДНК имеет вид бусин, называемых нуклеосомами. 200 пар нуклеотидов идет на одну нуклеосому, 146 пар накручиваются на гистоны, а остальные 54 висят в виде линкерных (связывающих нуклеосомы) ДНК. Это первый уровень компактизации ДНК. В хромосомах ДНК свернута еще несколько раз для того, чтобы образовались компактные структуры.

К нуклеиновым кислотам кроме ДНК относится также РНК. В клетке присутствуют разные типы РНК: рибосомные, матричные, транспортные. Существуют и другие виды РНК, о которых мы будем говорить позже. РНК синтезируется в виде одно-цепочечной молекулы, но отдельные ее участки входят в состав двуцепочечных спиралей. Для РНК также говорят о первичной структуре (последовательности нуклеотидов) и вторичной структуре (образование двуспиральных участков).

Липиды

В состав липидов входят жирные кислоты, имеющие длинные углероводородные цепи. Жирные кислоты гидрофобны, то есть не растворимы в воде.

Липиды представляют собой соединения жирных кислот с глицерином (эфиры). Например, на рисунке изображен лецитин.

В клетке важную роль играют липиды, в которых к глицерину присоединен остаток фосфорной кислоты и 2 жирных кислоты. Они называются фосфолипидами. Молекулы фосфолипидов имеют полярную (то есть гидрофильную, хорошо растворимую) группу на одном конце молекулы и длинный гидрофобный хвост. К фосфолипидам относится фосфатидилхолин.

В водном растворе фосфолипиды образуют мицеллы, в которых молекулы обращены полярными "головами" наружу, в сторону воды, а гидрофобные "хвосты" оказываются внутри мицеллы, спрятанными от воды. Клеточную мембрану также липиды с полярными "головами", которые обращены наружу по обе стороны мембраны, а гидрофобные "хвосты" находятся внутри липидного бислоя.

Список литературы

Для подготовки данной работы были использованы материалы с сайта http://bio.fizteh.ru

Лекция № 19
НУКЛЕОЗИДЫ. НУКЛЕОТИДЫ. НУКЛЕИНОВЫЕ КИСЛОТЫ
План

    1. Нуклеиновые основания.
    2. Нуклеозиды.
    3. Нуклеотиды.
    4. Нуклеотидные коферменты.
    5. Нуклеиновые кислоты.


Лекция № 19

НУКЛЕОЗИДЫ. НУКЛЕОТИДЫ. НУКЛЕИНОВЫЕ
КИСЛОТЫ

План

    1. Нуклеиновые основания.
    2. Нуклеозиды.
    3. Нуклеотиды.
    4. Нуклеотидные коферменты.
    5. Нуклеиновые кислоты.

Нуклеиновые кислоты – присутствующие в
клетках всех живых организмов биополимеры, которые выполняют важнейшие функции
по хранению и передаче генетической информации и участвуют в механизмах ее
реализации в процессе синтеза клеточных белков.

Установление состава нуклеиновых кислот путем их последовательного
гидролитического расщепления позволяет выделить следующие структурные
компоненты.

Рассмотрим структурные компоненты нуклеиновых
кислот в порядке усложнения их строения.

1. Нуклеиновые основания.

Гетероциклические основания, входящие в состав
нуклеиновых кислот (нуклеиновые основания ), — это гидрокси- и
аминопроизводные пиримидина и пурина. Нуклеиновые кислоты содержат три
гетероциклических основания с пиримидиновым циклом (пиримидиновые
основания
) и два — с пуриновым циклом (пуриновые основания ). Нуклеиновые основания
имеют тривиальные названия и соответствующие однобуквенные обозначения.

В составе нуклеиновых кислот гетероциклические
основания находятся в термодинамически стабильной оксоформе.

Кроме этих групп нуклеиновых оснований,
называемых основными , в нуклеиновых кислотах в небольших количествах
встречаются минорные основания: 6-оксопурин (гипоксантин),
3-N-метилурацил, 1-N-метилгуанин и др.

Нуклеиновые кислоты включают остатки
моносахаридов – D-рибозы и 2-дезокси –D-рибозы. Оба моносахарида присутствуют в
нуклеиновых кислотах в b -фуранозной форме.

2. Нуклеозиды.

Нуклеозиды – это N-гликозиды, образованные нуклеиновыми основаниями и рибозой
или дезоксирибозой.

Между аномерным атомом углерода моносахарида и атомом азота в положении 1
пиримидинового цикла или атомом азота в положении 9 пуринового цикла образуется b -гликозидная
связь.

В зависимости от природы моносахаридного остатка
нуклеозиды делят на рибонуклеозиды (содержат остаток рибозы) и дезоксирибонуклеозиды (содержат остаток дезоксирибозы). Названия
нуклеозидов строят на основе тривиальных названий нуклеиновых оснований,
добавляя окончание –идин для производных пиримидина и -озин для
производных пурина. К названиям дезоксирибонуклеозидов добавляют приставку дезокси-. Исключение составляет нуклеозид, образованный тимином и
дезоксирибозой, к которому приставка дезокси- не добавляется, так как
тимин образует нуклеозиды с рибозой лишь в очень редких случаях.

Для обозначения нуклеозидов используются
однобуквенные обозначения, входящих в их состав нуклеиновых оснований. К
обозначениям дезоксирибонуклеозидов (за исключением тимидина) добавляется буква
”д”.

Наряду с представленными на схеме основными
нуклеозидами в составе нуклеиновых кислот встречаются минорные нуклеозиды,
содержащие модифицированные нуклеиновые основания (см. выше).

В природе нуклеозиды встречаются также в
свободном состоянии, преимущественно в виде нуклеозидных антибиотиков, которые
проявляют противоопухолевую активность. Нуклеозиды-антибиотики имеют некоторые
отличия от обычных нуклеозидов в строении либо углеводной части, либо
гетероциклического основания, что позволяет им выступать в качестве
антиметаболитов, чем и объясняется их антибиотическая активность.

Как N-гликозиды, нуклеозиды устойчивы к действию
щелочей, но расщепляются под действием кислот с образованием свободного
моносахарида и нуклеинового основания. Пуриновые нуклеозиды гидролизуются
значительно легче пиримидиновых.

3. Нуклеотиды

Нуклеотиды – это эфиры нуклеозидов и фосфорной
кислоты (нуклеозидфосфаты). Сложноэфирную связь с фосфорной кислотой образует ОН
группа в положении 5 / или
3 / моносахарида. В зависимости от
природы моносахаридного остатка нуклеотиды делят на рибонуклеотиды (структурные элементы РНК) и дезоксирибонуклеотиды (структурные элементы
ДНК). Названия нуклеотидов включают название нуклеозида с указанием положения в
нем остатка фосфорной кислоты. Сокращенные обзначения нуклеозидов содержат
обозначение нуклеозида, остатка моно-, ди- или трифосфорной кислоты, для
3
/ -производных указывается также
положение фосфатной группы.

Нуклеотиды являются мономерными звеньями, из
которых построены полимерные цепи нуклеиновых кислот. Некоторые нуклеотиды
выполняют роль коферментов и участвуют в обмене веществ.

4. Нуклеотидные
коферменты

Коферменты – это органические соединения
небелковой природы, которые необходимы для осуществления каталитического
действия ферментов. Коферменты относятся к разным классам органических
соединений. Важную группу коферментов составляют нуклеозидполифосфаты .

Аденозинфосфаты – производные
аденозина, содержащие остатки моно-, ди- и трифосфорных кислот. Особое место
занимают аденозин-5 / -моно-, ди- и
трифосфаты — АМФ, АДФ и АТФ — макроэргические вещества, которые обладают
большими запасами свободной энергии в подвижной форме. Молекула АТФ содержит
макроэргические связи Р-О, которые легко расщепляются в результате гидролиза.
Выделяющаяся при этом свободная энергия обеспечивает протекание сопряженных с
гидролизом АТФ термодинамически невыгодных анаболических процессов, например,
биосинтез белка.

Кофермент А . Молекула этого
кофермента состоит из трех структурных компонентов: пантотеновой кислоты,
2-аминоэтантиола и АДФ.

Кофермент А участвует в процессах
ферментативного ацилирования, активируя карбоновые кислоты путем превращения их
в реакционноспособные сложные эфиры тиолов.

Никотинамидадениндинуклеотидные коферменты. Никотинамидадениндинуклеотид (НАД +) и его фосфат (НАДФ + ) содержат в своем составе катион пиридиния в виде
никотинамидного фрагмента. Пиридиниевый катион в составе этих коферментов
способен обратимо присоединять гидрид-анион с образованием восстановленной формы
кофермента — НАД
Н.

Таким образом никотинамидадениндинуклеотидные
коферменты участвуют в окислительно-восстановительных процессах, связанных с
переносом гидрид-аниона, например, окислении спиртовых групп в альдегидные
(превращение ретинола в ретиналь), восстановительном аминировании кетокислот,
восстановлении кетокислот в гидроксикислоты. В ходе этих процессов субстрат
теряет (окисление) или присоединяет (восстановление) два атома водорода в виде
Н + и Н — . Кофермент служит при этом акцептором
(НАД
+ ) или донором
(НАД . Н) гидрид-иона. Все процессы с
участием коферментов являются стереоселективными. Так, при восстановлении
пировиноградной кислоты образуется исключительно L-молочная кислота.

5. Нуклеиновые кислоты.

Первичная структура нуклеиновых кислот представляет собой линейную полимерную цепь, построенную
из мономеров – нуклеотидов, которые связаны между собой
3 / -5 / -фосфодиэфирными
связями. Полинуклеотидная цепь имеет 5′-конец и 3′- конец. На 5′-конце находится
остаток фосфорной кислоты, а на 3′- конце — свободная гидроксильная группа.
Нуклеотидную цепь принято записывать, начиная с 5′-конца.

В зависимости от природы моносахаридных остатков
в нуклеотиде различают дезоксирибонуклеиновые кислоты (ДНК) и рибонуклеиновые
кислоты (РНК). ДНК и РНК различаются также по природе входящих в их состав
нуклеиновых оснований: урацил входит только в состав РНК, тимин – только в
состав ДНК.

Вторичная структура ДНК представляет собой комплекс двух полинуклеотидных цепей, закрученных вправо
вокруг общей оси так, что углевод-фосфатные цепи находятся снаружи, а
нуклеиновые основания направлены внутрь (двойная спираль Уотсона-Крика ).
Шаг спирали — 3.4 нм, на 1 виток приходится 10 пар нуклеотидов. Полинуклеотидные
цепи антипараллельны,т.е.
напротив 3′-конца одной цепи находится 5′-конец другой цепи. Две цепи ДНК
неодинаковы по своему составу, но они комплементарны . Это выражается в
том, что напротив аденина (А) в одной цепи всегда находится тимин (Т) в другой
цепи, а напротив гуанина (Г) всегда находится цитозин (Ц). Комплементарное
спаривание А с Т и Г с Ц осуществляется за счет водородных связей. Между А и Т
образуется две водородные связи, между Г и Ц – три.

Комплементарность цепей ДНК составляет
химическую основу важнейшей функции ДНК – хранения и передачи генетической
информации.

Типы РНК. Известны три основных
вида клеточных РНК: транспортные РНК (тРНК), матричные РНК (мРНК) и рибосомные
РНК (рРНК). Они различаются по месторасположению в клетке, составу и размерами,
а также функциями. РНК состоят, как правило, из одной полинуклеотидной цепи,
которая в пространстве складывается таким образом, что ее отдельные участки
становятся комплементарными друг другу (”слипаются”) и образуют короткие
двуспиральные участки молекулы, в то время как другие участки остаются
однотяжевыми.

Матричные РНК выполняют функцию матрицы
белкового синтеза в рибосомах.

Рибосомные РНК выполняют роль структурных
компонентов рибосом.

Транспортные РНК участвуют в
транспортировке a -аминокислот из цитоплазмы в рибосомы и в переводе информации нуклеотидной
последовательности мРНК в последовательность аминокислот в белках.

Механизм передачи генетической информации. Генетическая информация закодированиа в нуклеотидной последовательности
ДНК. Механизм передачи этой информации включает три основных этапа.

Первый этап – репликация –копирование
материнской ДНК с образованием двух дочерних молекул ДНК, нуклеотидная
последовательность которых комплементарна последовательности материнской ДНК и
однозначно определяется ею. Репликация осуществляется путем синтеза новой
молекулы ДНК на материнской, которая играет роль матрицы. Двойная спираль
материнской ДНК раскручивается и на каждой из двух цепей происходит синтез новой
(дочерней) цепи ДНК с учетом принципа комплементарности. Процесс осуществляется
под действием фермента ДНК-полимеразы. Таким образом из одной материнской ДНК
образуются две дочерних, каждая из которых содержит в своем составе одну
материнскую и одну вновь синтезированную полинуклеотидную цепь.

Второй этап – транскрипция – процесс, в
ходе которого часть генетической информации переписывается с ДНК в форме мРНК.
Матричная РНК синтезируется на участке деспирализованной цепи ДНК как на матрице
под действием фермента РНК-полимеразы. В полинуклеотидной цепи мРНК
рибонуклеотиды, несущие определенные
нуклеиновые основания, выстраиваются в последовательности, определяемой
комплементарными взаимодействиями с нуклеиновыми основаниями цепи ДНК. При этом адениновому основанию в ДНК будет соответствовать урациловое основание в РНК. Генетическая информация о синтезе белка закодирована в ДНК с
помощью триплетного кода. Одна аминокислота кодируется
последовательностью из трех нуклеотидов, которую называют кодоном .
Участок ДНК, кодирующий одну полипептидную цепь, называется геном .
Каждому кодону ДНК соответствует комплементарный кодон в мРНК. В целом молекула
мРНК комплементарна определенной части цепи ДНК – гену.

Процессы репликации и транскрипции происходят в
ядре клетки. Синтез белка осуществляется в рибосомах. Синтезированная мРНК
мигрирует из ядра в цитоплазму к рибосомам, перенося генетическую информацию к
месту синтеза белка.

Третий этап – трансляция – процесс
реализации генетической информации, которую несет мРНК в виде последовательности
нуклеотидов в последовательность аминокислот в синтезируемом белке. a -Аминокислоты, необходимые для
синтеза белка транспортируются к рибосомам посредством тРНК, с которыми они
связываются путем ацилирования 3
/ -ОН группы на конце цепи тРНК.

тРНК имеет антикодоновую ветвь, содержащую
тринуклеотид — антикодон , который соответствует переносимой ею
аминокислоте. На рибосоме тРНК прикрепляются антикодоновыми участками к
соответствующим кодонам мРНК. Специфичность стыковки кодона и антикодона
обеспечивается их комплементарностью. Между сближенными аминокислотами
образуется пептидная связь. Таким образом реализуется строго определенная
последовательность соединения аминокислот в белки, закодированная в
генах.