Оценка параметров регрессионного уравнения. Оценка параметров линейной регрессии


Первое выражение позволяет по заданным значениям фактора x рассчитать теоретические значения результативного признака, подставляя в него фактические значения фактора x . На графике теоретические значения лежат на прямой, которые представляют собой линию регрессии.

Построение линейной регрессии сводится к оценке ее параметров- а и b . Классический подход к оцениванию параметров линейной регрессии основан на методе наименьших квадратов (МНК).

Для нахождения минимума надо вычислить частные производные суммы (4) по каждому из параметров – а и b – и приравнять их к нулю.

(5)

Преобразуем, получаем систему нормальных уравнений:

(6)

В этой системе n- объем выборки, суммы легко рассчитываются из исходных данных. Решаем систему относительно а и b , получаем:

(7)

. (8)

Выражение (7) можно записать в другом виде:

(9)

где ковариация признаков, дисперсия фактора x.

Параметр b называется коэффициентом регрессии. Его величина показывает среднее изменение результата с изменением фактора на одну единицу. Возможность четкой экономической интерпретации коэффициента регрессии сделала линейное уравнение парной регрессии достаточно распространенным в эконометрических исследованиях.

Формально a – значение y при x=0. Если x не имеет и не может иметь нулевого значения, то такая трактовка свободного члена a не имеет смысла. Параметр a может не иметь экономического содержания. Попытки экономически интерпретировать его могут привести к абсурду, особенно при a < 0. Интерпретировать можно лишь знак при параметре a. Если a > 0, то относительное изменение результата происходит медленнее, чем изменение фактора. Сравним эти относительные изменения:

< при > 0, > 0 <

Иногда линейное уравнение парной регрессии записывают для отклонений от средних значений:

где , . При этом свободный член равен нулю, что и отражено в выражении (10). Этот факт следует из геометрических соображений: уравнению регрессии отвечает та же прямая (3), но при оценке регрессии в отклонениях начало координат перемещается в точку с координатами . При этом в выражении (8) обе суммы будут равны нулю, что и повлечет равенство нулю свободного члена.

Рассмотрим в качестве примера по группе предприятий, выпускающих один вид продукции, регрессионную зависимость издержек от выпуска продукции .

Таблица 1

Выпуск продукции тыс.ед.() Затраты на производство, млн.руб.()
31,1
67,9
141,6
104,7
178,4
104,7
141,6
Итого: 22 770,0

Система нормальных уравнений будет иметь вид:

Решая её, получаем a= -5,79, b=36,84.

Уравнение регрессии имеет вид:

Подставив в уравнение значения х , найдем теоретические значения y (последняя колонка таблицы).

Величина a не имеет экономического смысла. Если переменные x и y выразить через отклонения от средних уровней, то линия регрессии на графике пройдет через начало координат. Оценка коэффициента регрессии при этом не изменится:

, где , .

В качестве другого примера рассмотрим функцию потребления в виде:

,

где С- потребление, y –доход, K,L- параметры. Данное уравнение линейной регрессии обычно используется в увязке с балансовым равенством:

,

где I – размер инвестиций, r – сбережения.

Для простоты предположим, что доход расходуется на потребление и инвестиции. Таким образом, рассматривается система уравнений:

Наличие балансового равенства накладывает ограничения на величину коэффициента регрессии, которая не может быть больше единицы, т.е. .

Предположим, что функция потребления составила:

.

Коэффициент регрессии характеризует склонность к потреблению. Он показывает, что из каждой тысячи рублей дохода на потребление расходуется в среднем 650 руб., а 350 руб. инвестируется. Если рассчитать регрессию размера инвестиций от дохода, т.е. , то уравнение регрессии составит . Это уравнение можно и не определять, поскольку оно выводится из функции потребления. Коэффициенты регрессии этих двух уравнений связаны равенством:

Если коэффициент регрессии оказывается больше единицы, то , и на потребление расходуются не только доходы, но и сбережения.

Коэффициент регрессии в функции потребления используется для расчета мультипликатора:

Здесь m ≈2,86, поэтому дополнительные вложения 1 тыс. руб. на длительный срок приведут при прочих равных условиях к дополнительному доходу 2,86 тыс. руб.

При линейной регрессии в качестве показателя тесноты связи выступает линейный коэффициент корреляции r:

(11)

Его значения находятся в границах: . Если b > 0, то при b < 0 . По данным примера , что означает очень тесную зависимость затрат на производство от величины объема выпускаемой продукции.

Для оценки качества подбора линейной функции рассчитывается коэффициент детерминации как квадрат линейного коэффициента корреляции r 2 . Он характеризует долю дисперсии результативного признака y , объясняемую регрессией, в общей дисперсии результативного признака:

(12)

Величина характеризует долю дисперсии y , вызванную влиянием остальных, не учтенных в модели факторов.

В примере . Уравнением регрессии объясняется 98,2% дисперсии , а на прочие факторы приходится 1,8%, это остаточная дисперсия.


1.3. Предпосылки МНК (условия Гаусса-Маркова)

Как было сказано выше, связь между y и x в парной регрессии является не функциональной, а корреляционной. Поэтому оценки параметров a и b являются случайными величинами, свойства которых существенно зависят от свойств случайной составляющей ε. Для получения по МНК наилучших результатов необходимо выполнение следующих предпосылок относительно случайного отклонения (условия Гаусса-Маркова):

1 0 . Математическое ожидание случайного отклонения равно нулю для всех наблюдений: .

2 0 . Дисперсия случайных отклонений постоянна: .

Выполнимость данной предпосылки называется гомоскедастичностью (постоянством дисперсии отклонений). Невыполнимость данной предпосылки называется гетероскедастичностью (непостоянством дисперсии отклонений)

3 0 . Случайные отклонения ε i и ε j являются независимыми друг от друга для :

Выполнимость этого условия называется отсутствием автокорреляции .

4 0 . Случайное отклонение должно быть независимо от объясняющих переменных.

Обычно это условие выполняется автоматически, если объясняющие переменные в данной модели не являются случайными. Кроме того, выполнимость данной предпосылки для эконометрических моделей не столь критична по сравнению с первыми тремя.

При выполнимости указанных предпосылок имеет место теорема Гаусса -Маркова : оценки (7) и (8), полученные по МНК, имеют наименьшую дисперсию в классе всех линейных несмещенных оценок .

Таким образом, при выполнении условий Гаусса-Маркова оценки (7) и (8) являются не только несмещенными оценками коэффициентов регрессии, но и наиболее эффективными, т.е. имеют наименьшую дисперсию по сравнению с любыми другими оценками данных параметров, линейными относительно величин y i .

Именно понимание важности условий Гаусса-Маркова отличает компетентного исследователя, использующего регрессионный анализ, от некомпетентного. Если эти условия не выполнены, исследователь должен это сознавать. Если корректирующие действия возможны, то аналитик должен быть в состоянии их выполнить. Если ситуацию исправить невозможно, исследователь должен быть способен оценить, насколько серьезно это может повлиять на результаты.

Экономические явления, как правило, определяются большим числом одновременно и совокупно действующих факторов. В связи с этим часто возникает задача исследования зависимости переменной у от нескольких объясняющих переменных (х 1, х 2 ,…, х k) которая может быть решена с помощью множественного корреляционно-регрессионного анализа.

При исследовании зависимости методами множественной регрессии задача формируется так же, как и при использовании парной регрессии, т.е. требуется определить аналитическое выражение формы связи между результативным признаком у и факторными признаками х, х 2 , ..., х k , найти функцию , где k – число факторных признаков

Множественная регрессия широко используется в решении проблем спроса, доходности акций, при изучении функции издержек производства, в макроэкономических расчетах и целом ряде других вопросов эконометрики. В настоящее время множественная регрессия – один из наиболее распространенных методов в эконометрике. Основная цель множественной регрессии – построить модель с большим числом факторов, определив при этом влияние каждого из них в отдельности, а также совокупное их воздействие на моделируемый показатель.

Из-за особенностей метода наименьших квадратов во множественной регрессии, как и в парной, применяются только линейные уравнения и уравнения, приводимые к линейному виду путем преобразования переменных. Чаще всего используется линейное уравнение, которое можно записать следующим образом:

a 0 , a 1, …, a k – параметры модели (коэффициенты регрессии);

ε j – случайная величина (величина остатка).

Коэффициент регрессии а j показывает, на какую величину в среднем изменится результативный признак у, если переменную х j увеличить на единицу измерения при фиксированном (постоянном) значении других факторов, входящих в уравнение регрессии. Параметры при x называются коэффициентами «чистой» регрессии .

Пример.

Предположим, что зависимость расходов на продукты питания по совокупности семей характеризуется следующим уравнением:

y – расходы семьи за месяц на продукты питания, тыс. руб.;

x 1 – месячный доход на одного члена семьи, тыс. руб.;

x 2 – размер семьи, человек.

Анализ данного уравнения позволяет сделать выводы – с ростом дохода на одного члена семьи на 1 тыс. руб. расходы на питание возрастут в среднем на 350 руб. при том же среднем размере семьи. Иными словами, 35% дополнительных семейных расходов тратится на питание. Увеличение размера семьи при тех же ее доходах предполагает дополнительный рост расходов на питание на 730 руб. Первый параметр не подлежит экономической интерпретации.

Оценивание достоверности каждого из параметров модели осуществляется при помощи t-критерия Стьюдента. Для любого из параметров модели а j значение t-критерия рассчитывается по формуле , где


S ε – стандартное (среднее квадратическое) отклонение уравнения регрессии)

определяется по формуле

Коэффициент регрессии а j считается достаточно надежным, если расчетное значение t- критерия с (n - k - 1 ) степенями свободы превышает табличное, т.е. t расч > t а jn - k -1 . Если надеж­ность коэффициента регрессии не подтверждается, то следует; вывод о несущественности в модели факторного j признака и необходимости его устранения из модели или замены на другой факторный признак.

Важную роль при оценке влияния факторов играют коэффициенты регрессионной модели. Однако непосредственно с их помощью нельзя сопоставлять факторные признаки по степени их влияния на зависимую переменную из-за различия единиц измерения и разной степени колеблемости. Для устранения таких различий применяются частные коэффициенты эластичности Э j и бета-коэффициенты β j .

Формула для расчета коэффициента эластичности

где

a j – коэффициент регрессии фактора j ,

Среднее значение результативного признака

Среднее значение признака j

Коэффициент эластичности показывает, на сколько процентов изменяется зависимая переменная у при изменении фактора j на 1 %.

Формула определения бета - коэффициента.

, где

S xj – среднее квадратическое отклонение фактора j ;

S y - среднее квадратическое отклонение фактора y.

β - коэффициент показывает, на какую часть величины среднего квадратического отклонения S y из­менится зависимая переменная у с изменением со­ответствующей независимой переменной х j на величину своего среднего квадратического отклонения при фиксированном значении остальных неза­висимых переменных.

Долю влияния определенного фактора в суммарном влиянии всех факторов можно оценить по величине дельта-коэффициентов Δ j .

Указанные коэффициенты позволяют проранжировать факторы по степени влияния факторов на зависимую переменную.

Формула определения дельта - коэффициента.

r yj – коэффициент парной корреляции между фактором j и зависимой переменной;

R 2 – множественный коэффициент детерминации.

Коэффициент множественной детерминации используют для оценки качества множественных регрессионных моделей.

Формула определения коэффициента множественной детерминации.

Коэффициент детерминации показывает долю вариации результативного признака, находящегося под воздействием факторных признаков, т.е. опре­деляет, какая доля вариации признака у учтена в модели и обусловлена влиянием на него факторов, включенных в модель. Чем ближе R 2 к единице, тем выше качество модели

При добавлении независимых переменных значение R 2 уве­личивается, поэтому коэффициент R 2 должен быть скорректи­рован с учетом числа независимых переменных по формуле

Для проверки значимости модели регрессии используется F-критерий Фишера. Он определяется по формуле

Если расчетное значение критерия с γ 1 , = k и γ 2 = (n - k- 1) степенями свободы больше табличного при заданном уровне значимости, то модель считается значимой.

В качестве меры точностимодели применяют стандартную ошибку, которая представляет собой отношение суммы квадратов уровней остаточной компоненты к величине (n - k -1):

Классический подход к оцениванию параметров линейной модели основан на методе наименьших квадратов (МНК) . Система нормальных уравнений имеет вид:

Решение системы может быть осуществлено по одному из известных способов: Метод Гаусса, метод Крамера и т.д.

Пример15.

По четырем предприятиям региона (таблица 41) изучается зависимость выработки продукции на одного работника y (тыс. руб.) от ввода в действие новых основных фондов (% от стоимости фондов на конец года) и от удельного веса рабочих высокой квалификации в общей численности рабочих (%). Требуется написать уравнение множественной регрессии.

Таблица 41 – Зависимость выработки продукции на одного работника

Линейная регрессия сводится к нахождению уравнения вида:

Первое выражение позволяет по заданным значениям фактора х рассчитать теоретические значения результативного признака, подставляя в него фактические значения факторах. На графике (рис. 1.2) теоретические значения лежат на прямой, которая представляет собой линию регрессии.

Построение линейной регрессии сводится к оценке ее параметров - а и Ь. Классический подход к оцениванию параметров линейной регрессии основан на методе наименьших квадратов (МНК).

МНК позволяет получить такие оценки параметров а и Ь, при которых сумма квадратов отклонений фактических значений у от теоретических у х минимальна:

Рис. 1.2.

Для нахождения минимума надо вычислить частные производные суммы (1.4) по каждому из параметров (а и ft) и приравнять их к нулю:

После преобразования получаем систему нормальных уравнений:

В системе п - объем выборки, суммы легко рассчитываются из исходных данных. Решая систему относительно а и Ь, получаем:

Выражение (1.7) можно записать в другом виде:

где cov(x, у) - ковариация признаков; су* - дисперсия фактора х.

Параметр b называется коэффициентом регрессии. Его величина показывает среднее изменение результата с увеличением фактора на одну единицу. Возможность четкой экономической интерпретации коэффициента регрессии сделала линейное уравнение парной регрессии достаточно распространенным в эконометрических исследованиях.

Формально а - значение у при х = 0. Если х не имеет и не может иметь нулевого значения, то такая трактовка свободного члена а не имеет смысла. Параметр а чаще всего не имеет экономического содержания. Попытки экономически интерпретировать его могут привести к абсурду, особенно при а 0. Интерпретировать можно лишь знак при параметре а. Если а > 0, то относительное изменение результата происходит медленнее, чем изменение фактора. Сравним эти относительные изменения:

Иногда линейное уравнение парной регрессии записывают для отклонений от средних значений:

где

При этом свободный член равен нулю, что и отражено в выражении (1.10). Этот факт следует из геометрических соображений: уравнению регрессии отвечает та же прямая (1.3), но при оценке регрессии в отклонениях начало координат перемещается в точку с координатами (Зс, у). При этом в выражении (1.8) обе суммы будут равны нулю, что и повлечет равенство нулю свободного члена. Выражения (1.7) и (1.9) при этом также упрощаются.

В качестве примера рассмотрим на группе предприятий, выпускающих один вид продукции, регрессионную зависимость издержек от выпуска продукции у = а + Ьх + е (табл. 1.1).

Система нормальных уравнений будет иметь вид

Решая ее, получаем а - -5,79, b - 36,84.

Уравнение регрессии имеет вид

Таблица 1.1

Исходные данные для оценки параметров парной линейной модели

Выпуск продукции (х), тыс. ед.

Затраты на производство (у), млн руб.

Подставив в уравнение регрессии значения х, найдем теоретические значения у (последняя колонка табл. 1.1).

Величина а не имеет экономического смысла. Если переменные х и у выразить через отклонения от средних уровней, то линия регрессии на графике пройдет через начало координат. Оценка коэффициента регрессии при этом не изменится: у" = 36,84х", где у" = у-у, х" = х-х.

В качестве другого примера рассмотрим функцию потребления в виде:

где С - потребление; у - доход; К, L - параметры.

Данное уравнение линейной регрессии обычно используется в увязке с балансовым равенством

где / - размер инвестиций; г - сбережения.

Для простоты предположим, что доход расходуется на потребление и инвестиции. Таким образом, рассматривается система уравнений

Наличие балансового равенства накладывает ограничения на величину коэффициента регрессии, которая не может быть больше единицы, т.е. К 1.

Предположим, что функция потребления составила С = 1,9 + 0,65у.

Коэффициент регрессии характеризует склонность к потреблению. Он показывает, что из каждой тысячи рублей дохода на потребление расходуется в среднем 650 руб., а 350 руб. инвестируется. Если рассчитать регрессию размера инвестиций от дохода, т.е. I = а + by, то уравнение регрессии будет I = -1,9 + 0,35у. Его можно и не определять, поскольку оно выводится из функции потребления. Коэффициенты регрессии этих двух уравнений связаны равенством 0,65 + 0,35 = 1. Если коэффициент регрессии оказывается больше единицы, то у и на потребление расходуются не только доходы, но и сбережения.

Коэффициент регрессии К в функции потребления используется для расчета мультипликатора:

где т » 2,86, поэтому дополнительные вложения 1 тыс. руб. на длительный срок приведут при прочих равных условиях к дополнительному доходу 2,86 тыс. руб.

При линейной регрессии в качестве показателя тесноты связи выступает линейный коэффициент корреляции г.

Его значения находятся в границах: - 1 r 1. Если 6>0,то0 г b 0-1 г 0. По данным примера расчет выражения (1.11) дает г = 0,991, что означает очень тесную зависимость затрат на производство от величины объема выпускаемой продукции.

Для оценки качества подбора линейной функции рассчитывается коэффициент детерминации как квадрат линейного коэффициента корреляции I 2 . Он характеризует долю дисперсии результативного признака у, объясняемую регрессией, в общей дисперсии результативного признака:

Величина 1 - г 2 характеризует долю дисперсии у, вызванную влиянием остальных, не учтенных в модели факторов.

В примере г 2 = 0,982. Уравнением регрессии объясняется 98,2% дисперсии у, а на прочие факторы приходится 1,8% - это остаточная дисперсия.

Проверить значимость параметров уравнения регрессии можно, используя t-статистику .

Задание:
По группе предприятий, выпускающих один и тот же вид продукции, рассматриваются функции издержек:
y = α + βx;
y = α x β ;
y = α β x ;
y = α + β / x;
где y – затраты на производство, тыс. д. е.
x – выпуск продукции, тыс. ед.

Требуется:
1. Построить уравнения парной регрессии y от x:

  • линейное;
  • степенное;
  • показательное;
  • равносторонней гиперболы.
2. Рассчитать линейный коэффициент парной корреляции и коэффициент детерминации . Сделать выводы.
3. Оценить статистическую значимость уравнения регрессии в целом.
4. Оценить статистическую значимость параметров регрессии и корреляции.
5. Выполнить прогноз затрат на производство при прогнозном выпуске продукции, составляющем 195 % от среднего уровня.
6. Оценить точность прогноза, рассчитать ошибку прогноза и его доверительный интервал.
7. Оценить модель через среднюю ошибку аппроксимации.

Решение :

1. Уравнение имеет вид y = α + βx
1. Параметры уравнения регрессии.
Средние значения

Дисперсия

Среднеквадратическое отклонение

Коэффициент корреляции

Связь между признаком Y фактором X сильная и прямая
Уравнение регрессии

Коэффициент детерминации
R 2 = 0.94 2 = 0.89, т.е. в 88.9774 % случаев изменения х приводят к изменению y. Другими словами - точность подбора уравнения регрессии - высокая

x y x 2 y 2 x ∙ y y(x) (y-y cp) 2 (y-y(x)) 2 (x-x p) 2
78 133 6084 17689 10374 142.16 115.98 83.83 1
82 148 6724 21904 12136 148.61 17.9 0.37 9
87 134 7569 17956 11658 156.68 95.44 514.26 64
79 154 6241 23716 12166 143.77 104.67 104.67 0
89 162 7921 26244 14418 159.9 332.36 4.39 100
106 195 11236 38025 20670 187.33 2624.59 58.76 729
67 139 4489 19321 9313 124.41 22.75 212.95 144
88 158 7744 24964 13904 158.29 202.51 0.08 81
73 152 5329 23104 11096 134.09 67.75 320.84 36
87 162 7569 26244 14094 156.68 332.36 28.33 64
76 159 5776 25281 12084 138.93 231.98 402.86 9
115 173 13225 29929 19895 201.86 854.44 832.66 1296
0 0 0 16.3 20669.59 265.73 6241
1027 1869 89907 294377 161808 1869 25672.31 2829.74 8774

Примечание: значения y(x) находятся из полученного уравнения регрессии:
y(1) = 4.01*1 + 99.18 = 103.19
y(2) = 4.01*2 + 99.18 = 107.2
... ... ...

2. Оценка параметров уравнения регрессии
Значимость коэффициента корреляции

По таблице Стьюдента находим Tтабл
T табл (n-m-1;α/2) = (11;0.05/2) = 1.796
Поскольку Tнабл > Tтабл, то отклоняем гипотезу о равенстве 0 коэффициента корреляции. Другими словами, коэффициента корреляции статистически - значим.

Анализ точности определения оценок коэффициентов регрессии





S a = 0.1712
Доверительные интервалы для зависимой переменной

Рассчитаем границы интервала, в котором будет сосредоточено 95% возможных значений Y при неограниченно большом числе наблюдений и X = 1
(-20.41;56.24)
Проверка гипотез относительно коэффициентов линейного уравнения регрессии
1) t-статистика


Статистическая значимость коэффициента регрессии a подтверждается

Статистическая значимость коэффициента регрессии b не подтверждается
Доверительный интервал для коэффициентов уравнения регрессии
Определим доверительные интервалы коэффициентов регрессии, которые с надежность 95% будут следующими:
(a - t S a ; a + t S a)
(1.306;1.921)
(b - t b S b ; b + t b S b)
(-9.2733;41.876)
где t = 1.796
2) F-статистики


Fkp = 4.84
Поскольку F > Fkp, то коэффициент детерминации статистически значим

Оценка значимости параметров уравнения регрессии

Оценка значимости параметров уравнения линейной регрессии производится с помощью критерия Стьюдента:

если t расч. > t кр, то принимается основная гипотеза (H o ), свидетельствующая о статистической значимости параметров регрессии;

если t расч. < t кр, то принимается альтернативная гипотеза (H 1 ), свидетельствующая о статистической незначимости параметров регрессии.

где m a , m b – стандартные ошибки параметров a и b:

(2.19)

(2.20)

Критическое (табличное) значение критерия находится с помощью статистических таблиц распределения Стьюдента (приложение Б) или по таблицам Excel (раздел мастера функций «Статистические»):

t кр = СТЬЮДРАСПОБР(α=1-P; k=n-2 ), (2.21)

где k=n-2 также представляет собой число степенейсвободы.

Оценка статистической значимости может быть применена и к линейному коэффициенту корреляции

где m r – стандартная ошибка определения значений коэффициента корреляции r yx

(2.23)

Ниже представлены варианты заданий для практических и лабораторных работ по тематике второго раздела.

Вопросы для самопроверки по 2 разделу

1. Укажите основные составляющие эконометрической модели и их сущность.

2. Основное содержание этапов эконометрического исследования.

3. Сущность подходов по определению параметров линейной регрессии.

4. Сущность и особенность применения метода наименьших квадратов при определении параметров уравнения регрессии.

5. Какие показатели используются для оценки тесноты взаимосвязи исследуемых факторов?

6. Сущность линейного коэффициента корреляции.

7. Сущность коэффициента детерминации.

8. Сущность и основные особенности процедур оценки адекватности (статистической значимости) регрессионных моделей.

9. Оценка адекватности линейных регрессионных моделей по коэффициенту аппроксимации.

10. Сущность подхода оценки адекватности регрессионных моделей по критерию Фишера. Определение эмпирических и критических значений критерия.

11. Сущность понятия «дисперсионный анализ» применительно к эконометрическим исследованиям.

12. Сущность и основные особенности процедуры оценки значимости параметров линейного уравнения регрессии.

13. Особенности применения распределения Стьюдента при оценке значимости параметров линейного уравнения регрессии.

14. В чем состоит задача прогноза единичных значений исследуемого социально-экономического явления?

1. Построить поле корреляции и сформулировать предположение о форме уравнения взаимосвязи исследуемых факторов;

2. Записать основные уравнения метода наименьших квадратов, произвести необходимые преобразования, составить таблицу для промежуточных расчетов и определить параметры линейного уравнения регрессии;

3. Осуществить проверку правильности проведенных вычислений с помощью стандартных процедур и функций электронных таблиц Excel.

4. Провести анализ результатов, сформулировать выводы и рекомендации.

1. Расчет значения линейного коэффициента корреляции;

2. Построение таблицы дисперсионного анализа;

3. Оценка коэффициента детерминации;

4. Осуществить проверку правильности проведенных вычислений с помощью стандартных процедур и функций электронных таблиц Excel.

5. Провести анализ результатов, сформулировать выводы и рекомендации.

4. Провести общую оценку адекватности выбранного уравнения регрессии;

1. Оценка адекватности уравнения по значениям коэффициента аппроксимации;

2. Оценка адекватности уравнения по значениям коэффициента детерминации;

3. Оценка адекватности уравнения по критерию Фишера;

4. Провести общую оценку адекватности параметров уравнения регрессии;

5. Осуществить проверку правильности проведенных вычислений с помощью стандартных процедур и функций электронных таблиц Excel.

6. Провести анализ результатов, сформулировать выводы и рекомендации.

1. Использование стандартных процедур мастера функций электронных таблиц Excel (из разделов «Математические» и «Статистические»);

2. Подготовка данных и особенности применения функции «ЛИНЕЙН»;

3. Подготовка данных и особенности применения функции «ПРЕДСКАЗ».

1. Использование стандартных процедур пакета анализа данных электронных таблиц Excel;

2. Подготовка данных и особенности применения процедуры «РЕГРЕССИЯ»;

3. Интерпретация и обобщение данных таблицы регрессионного анализа;

4. Интерпретация и обобщение данных таблицы дисперсионного анализа;

5. Интерпретация и обобщение данных таблицы оценки значимости параметров уравнения регрессии;

При выполнении лабораторной работы по данным одного из вариантов необходимо выполнить следующие частные задания:

1. Осуществить выбор формы уравнения взаимосвязи исследуемых факторов;

2. Определить параметры уравнения регрессии;

3. Провести оценку тесноты взаимосвязи исследуемых факторов;

4. Провести оценку адекватности выбранного уравнения регрессии;

5. Провести оценку статистической значимости параметров уравнения регрессии.

6. Осуществить проверку правильности проведенных вычислений с помощью стандартных процедур и функций электронных таблиц Excel.

7. Провести анализ результатов, сформулировать выводы и рекомендации.

Задания для практических и лабораторных работ по теме «Парная линейная регрессия и корреляция в эконометрических исследованиях».

Вариант 1 Вариант 2 Вариант 3 Вариант 4 Вариант 5
x y x y x y x y x y
Вариант 6 Вариант 7 Вариант 8 Вариант 9 Вариант 10
x y x y x y x y x y