Относительная ошибка аппроксимации. Оценка с помощью F-критерия Фишера статистической надежности результатов регрессионного моделирования

Средняя ошибка аппроксимации - среднее отклонение расчетных значений от фактических:

Где y x - расчетное значение по уравнению.

Значение средней ошибки аппроксимации до 15% свидетельствует о хорошо подобранной модели уравнения.

По семи территориям Уральского района за 199Х г. известны значения двух признаков.

Требуется:
1. Для характеристики зависимости у от х рассчитать параметры следующих функций:
а) линейной;
б) степенной;
в) показательной;
г) равносторонней гиперболы (так же нужно придумать как предварительно линеаризовать данную модель).
2. Оценить каждую модель через среднюю ошибку аппроксимации А ср и F-критерий Фишера.

Решение проводим при помощь онлайн калькулятора Линейное уравнение регрессии .
а) линейное уравнение регрессии;
Использование графического метода .
Этот метод применяют для наглядного изображения формы связи между изучаемыми экономическими показателями. Для этого в прямоугольной системе координат строят график, по оси ординат откладывают индивидуальные значения результативного признака Y, а по оси абсцисс - индивидуальные значения факторного признака X.
Совокупность точек результативного и факторного признаков называется полем корреляции .


На основании поля корреляции можно выдвинуть гипотезу (для генеральной совокупности) о том, что связь между всеми возможными значениями X и Y носит линейный характер.
Линейное уравнение регрессии имеет вид y = bx + a + ε
Здесь ε - случайная ошибка (отклонение, возмущение).
Причины существования случайной ошибки:
1. Невключение в регрессионную модель значимых объясняющих переменных;
2. Агрегирование переменных. Например, функция суммарного потребления – это попытка общего выражения совокупности решений отдельных индивидов о расходах. Это лишь аппроксимация отдельных соотношений, которые имеют разные параметры.
3. Неправильное описание структуры модели;
4. Неправильная функциональная спецификация;
5. Ошибки измерения.
Так как отклонения ε i для каждого конкретного наблюдения i – случайны и их значения в выборке неизвестны, то:
1) по наблюдениям x i и y i можно получить только оценки параметров α и β
2) Оценками параметров α и β регрессионной модели являются соответственно величины а и b, которые носят случайный характер, т.к. соответствуют случайной выборке;
Тогда оценочное уравнение регрессии (построенное по выборочным данным) будет иметь вид y = bx + a + ε, где e i – наблюдаемые значения (оценки) ошибок ε i , а и b соответственно оценки параметров α и β регрессионной модели, которые следует найти.
Для оценки параметров α и β - используют МНК (метод наименьших квадратов).




Получаем b = -0.35, a = 76.88
Уравнение регрессии:
y = -0.35 x + 76.88

x y x 2 y 2 x y y(x) (y i -y cp) 2 (y-y(x)) 2 |y - y x |:y
45,1 68,8 2034,01 4733,44 3102,88 61,28 119,12 56,61 0,1094
59 61,2 3481 3745,44 3610,8 56,47 10,98 22,4 0,0773
57,2 59,9 3271,84 3588,01 3426,28 57,09 4,06 7,9 0,0469
61,8 56,7 3819,24 3214,89 3504,06 55,5 1,41 1,44 0,0212
58,8 55 3457,44 3025 3234 56,54 8,33 2,36 0,0279
47,2 54,3 2227,84 2948,49 2562,96 60,55 12,86 39,05 0,1151
55,2 49,3 3047,04 2430,49 2721,36 57,78 73,71 71,94 0,172
384,3 405,2 21338,41 23685,76 22162,34 405,2 230,47 201,71 0,5699

Примечание: значения y(x) находятся из полученного уравнения регрессии:
y(45.1) = -0.35*45.1 + 76.88 = 61.28
y(59) = -0.35*59 + 76.88 = 56.47
... ... ...

Ошибка аппроксимации
Оценим качество уравнения регрессии с помощью ошибки абсолютной аппроксимации. Средняя ошибка аппроксимации - среднее отклонение расчетных значений от фактических:

Поскольку ошибка меньше 15%, то данное уравнение можно использовать в качестве регрессии.

F-статистики. Критерий Фишера.










3. Табличное значение определяется по таблицам распределения Фишера для заданного уровня значимости, принимая во внимание, что число степеней свободы для общей суммы квадратов (большей дисперсии) равно 1 и число степеней свободы остаточной суммы квадратов (меньшей дисперсии) при линейной регрессии равно n-2.
4. Если фактическое значение F-критерия меньше табличного, то говорят, что нет основания отклонять нулевую гипотезу.
В противном случае, нулевая гипотеза отклоняется и с вероятностью (1-α) принимается альтернативная гипотеза о статистической значимости уравнения в целом.

< Fkp, то коэффициент детерминации статистически не значим (Найденная оценка уравнения регрессии статистически не надежна).

б) степенная регрессия ;
Решение проводится с помощью сервиса Нелинейная регрессия . При выборе укажите Степенная y = ax b
в) показательная регрессия;
г) модель равносторонней гиперболы.
Система нормальных уравнений.

Для наших данных система уравнений имеет вид
7a + 0.1291b = 405.2
0.1291a + 0.0024b = 7.51
Из первого уравнения выражаем а и подставим во второе уравнение
Получаем b = 1054.67, a = 38.44
Уравнение регрессии:
y = 1054.67 / x + 38.44
Ошибка аппроксимации.
Оценим качество уравнения регрессии с помощью ошибки абсолютной аппроксимации.

Поскольку ошибка меньше 15%, то данное уравнение можно использовать в качестве регрессии.

Критерий Фишера.
Проверка значимости модели регрессии проводится с использованием F-критерия Фишера, расчетное значение которого находится как отношение дисперсии исходного ряда наблюдений изучаемого показателя и несмещенной оценки дисперсии остаточной последовательности для данной модели.
Если расчетное значение с k1=(m) и k2=(n-m-1) степенями свободы больше табличного при заданном уровне значимости, то модель считается значимой.

где m – число факторов в модели.
Оценка статистической значимости парной линейной регрессии производится по следующему алгоритму:
1. Выдвигается нулевая гипотеза о том, что уравнение в целом статистически незначимо: H 0: R 2 =0 на уровне значимости α.
2. Далее определяют фактическое значение F-критерия:

где m=1 для парной регрессии.
Табличное значение критерия со степенями свободы k1=1 и k2=5, Fkp = 6.61
Поскольку фактическое значение F < Fkp, то коэффициент детерминации статистически не значим (Найденная оценка уравнения регрессии статистически не надежна).

Министерство сельского хозяйства РФ

Федеральное государственное бюджетное образовательное

учреждение высшего профессионального образования

«Пермская государственная сельскохозяйственная академия

имени академика Д.Н.Прянишникова»

Кафедра финансов, кредита и экономического анализа

Контрольная работа по дисциплине «Эконометрика» Вариант - 10


    Ошибки аппроксимации и ее определение………………………………….3

    Аналитический способ выравнивания временного ряда и используемые при этом функции……………………………………………………………..4

    Практическая часть……………………………………………………….....11

    1. Задание 1………………………………………………………………11

      Задание 2……………………………………………….……………...19

Список использованной литературы……………………………………….....25

  1. Ошибки аппроксимации и ее определение.

Средняя ошибка аппроксимации – это среднее отклонение расчетных данных от фактических. Она определяется в процентах по модулю.

Фактические значения результативного признака отличаются от теоретических. Чем меньше это отличие, тем ближе теоретические значения подходят к эмпирическим данным, это лучшее качество модели. Величина отклонений фактических и расчетных значений результативного признака по каждому наблюдению представляет собой ошибку аппроксимации. Их число соответствует объему совокупности. В отдельных случаях ошибка апроксимации может оказаться равной нулю. Для сравнения используются величины отклонений, выраженные в процентах к фактическим значениям.

Поскольку может быть как величиной положительной, так и отрицательной, то ошибки аппроксимации для каждого наблюдения принято определять в процентах по модулю. Отклонения можно рассматривать как абсолютную ошибку аппроксимации, и как относительную ошибку аппроксимации. Чтоб иметь общее суждение о качестве модели из относительных отклонений по каждому наблюдению, определяют среднюю ошибку аппроксимации как среднюю арифметическую простую.

Среднюю ошибку аппроксимации рассчитают по формуле:

Возможно и иное определение средней ошибки аппроксимации:

Если А£10-12%, то можно говорить о хорошем качестве модели.

  1. Аналитический способ выравнивания временного ряда и используемые при этом функции.

Более совершенным приемом выявления основной тенденции развития в рядах динамики является аналитическое выравнивание. При изучении общей тенденции методом аналитического выравнивания исходят из того, что изменения уровней ряда динамики могут быть с той или иной степенью точности приближения выражены определенными математическими функциями. Вид уравнения определяется характером динамики развития конкретного явления. На практике по имеющемуся временному ряду задают вид и находят параметры функции y=f(t), а затем анализируют поведение отклонений от тенденции. Чаще всего при выравнивании используются следующие зависимости: линейная, параболическая и экспоненциальная. Во многих случаях моделирование рядов динамики с помощью полиномов или экспоненциальной функции не дает удовлетворительных результатов, так как в рядах динамики содержатся заметные периодические колебания вокруг общей тенденции. В таких случаях следует использовать гармонический анализ (гармоники ряда Фурье). Применение, именно, этого метода предпочтительно, поскольку он определяет закон, по которому можно достаточно точно спрогнозировать значения уровней ряда.

Целью же аналитического выравнивания динамического ряда является определение аналитической или графической зависимости y=f(t). Функцию y=f(t) выбирают таким образом, чтобы она давала содержательное объяснение изучаемого процесса. Это могут быть различные функции.

Системы уравнений вида y=f(t) для оценки параметров полиномов по МНК

(кликабельно)

Графическое представление полиномов n-порядка

1. Если изменение уровней ряда характеризуется равномерным увеличением (уменьшением) уровней, когда абсолютные цепные приросты близки по величине, тенденцию развития характеризует уравнение прямой линии.

2. Если в результате анализа типа тенденции динамики установлена криволинейная зависимость, примерно с постоянным ускорением, то форма тенденции выражается уравнением параболы второго порядка.

3. Если рост уровней ряда динамики происходит в геометрической прогрессии, т.е. цепные коэффициенты роста более или менее постоянны, выравнивание ряда динамики ведется по показательной функции.

После выбора вида уравнения необходимо определить параметры уравнения. Самый распространенный способ определения параметров уравнения - это метод наименьших квадратов, в котором в качестве решения принимается точка минимума суммы квадратов отклонений между теоретическими (выравненными по выбранному уравнению) и эмпирическими уровнями.

Выравнивание по прямой (определение линии тренда) имеет выражение: yt=a0+a1t

t-условное обозначение времени;

а 0 и a1-параметры искомой прямой.

Параметры прямой находятся из решения системы уравнений:

Система уравнений упрощается, если значения t подобрать так, чтобы их сумма равнялась Σt = 0, т. е. начало отсчета времени перенести в середину рассматриваемого периода. Если до переноса точки отсчета t = 1, 2, 3, 4…, то после переноса:

если число уровней ряда нечетное t = -4 -3 -2 -1 0 +1 +2 +3 +4

если число уровней ряда четное t = -7 -5 -3 -1 +1 +3 +5 +7

Таким образом, ∑t в нечетной степени всегда будет равна нулю.

Аналогично находятся параметры параболы 2-го порядка из решения системы урав­нений:

Выравнивание по среднему абсолютному приросту или среднему коэффициенту роста:

Δ-средний абсолютный прирост;

К-средний коэффициент роста;

У0-начальный уровень ряда;

Уn-конечный уровень ряда;

t-порядковый номер уровня, начиная с нуля.

Построив уравнение регрессии, проводят оценку его надежности. Значимость выбранного уравнения регрессии, параметров уравнения и коэффициента корреляции следует оценить, применив критические методы оценки:

F-критерий Фишера, t–критерий Стьюдента, при этом, расчетные значения критериев сравниваются с табличными (критическими) при заданном уровне значимости и числе степеней свободы. Fфакт > Fтеор - уравнение регрессии адекватно.

n - число наблюдений (уровней ряда), m - число параметров уравнения (модели) регрессии.

Проверка адекватности уравнения регрессии (качества модели в целом) осуществляется с помощью средней ошибки аппроксимации, величина которой не должна превышать 10-12% (рекомендовано).

Ошибка аппроксимации - один из наиболее часто возникающих вопросов при применении тех или иных методов аппроксимации исходных данных. Есть разного рода ошибки аппроксимации:

Ошибки, связанные с погрешностями исходных данных;

Ошибки, связанные с несоответствием аппроксимирующей модели структуре аппроксимируемых данных.

В Excel есть хорошо разработанная функция Линейн, предназначенная для обработки данных и аппроксимаций, в которой задействован отлаженный математический аппарат. Для того, чтобы иметь о ней представление, обратимся (через F1) к описательной части этой разработки, которую приводим с сокращениями и некоторыми изменениями обозначений.

Расчитывает статистику для ряда с применением метода наименьших квадратов, чтобы вычислить прямую линию, которая наилучшим образом аппроксимирует имеющиеся данные. Функция возвращает массив, который описывает полученную прямую. Поскольку возвращается массив значений, функция должна задаваться в виде формулы массива.

Уравнение для прямой линии имеет следующий вид:

y=a+b1*x1+b2*x2+...bn*xn

Синтаксис:

ЛИНЕЙН(y;x;конст;статистика)

Массив y - известные значения y.

Массив x - известные значеня x. Массив x может содержать одно или несколько множеств переменных.

Конст - это логическое значение, которое указывает, требуется ли, чтобы свободный член a был равен 0.

Если аргумент конст имеет значение ИСТИНА, 1 или опущено, то a вычисляется обычным образом. Если аргумент конст имеет значение ЛОЖЬ или 0, то a полагается равным 0.

Статистика - это логическое значение, которое указывает, требуется ли вернуть дополнительную статистику по регрессии. Если аргумент статистика имеет значение ИСТИНА или 1, то функция ЛИНЕЙН возвращает дополнительную регрессионную статистику. Если аргумент статистика имеет значение ЛОЖЬ, 0 или опущена, то функция ЛИНЕЙН возвращает только коэффициенты и свободный член.

Дополнительная регрессионая статистика:

se1,se2,...,sen - стандартные значения ошибок для коэффициентов b1,b2,...,bn.

sea - стандартное значение ошибки для постоянной a (sea = #Н/Д, если конст имеет значение ЛОЖЬ).

r2 - коэффициент детерминированности. Сравниваются фактические значения y и значения, получаемые из уравнения прямой; по результатам сравнения вычисляется коэффициент детерминированности, нормированный от 0 до 1. Если он равен 1, то имеет место полная корреляция с моделью, т.е. нет различия между фактическим и оценочным значениями y. В противоположном случае, если коэффициент детерминированности равен 0, то уравнение регрессии неудачно для предсказания значений y. Для получения информации о том, как вычисляется r2, см. "Замечания" в конце данного раздела.

sey - стандартная ошибка для оценки y.

F-статистика, или F-наблюдаемое значение. F-статистика используется для определения того, является ли наблюдаемая взаимосвязь между зависимой и независимой переменными случайной или нет.

df - степени свободы. Степени свободы полезны для нахождения F-критических значений в статистической таблице. Для определения уровня надежности модели нужно сравнить значения в таблице с F-статистикой, возвращаемой функцией ЛИНЕЙН.

ssreg - регрессионая сумма квадратов.

ssresid - остаточная сумма квадратов.

На приведенном ниже рисунке показано, в каком порядке возвращается дополнительная регрессионная статистика.

Замечания

Выборочную информацию из функции можно получить через функцию ИHДЕКС, например:

Y-пересечение (свободный член):

ИНДЕКС(ЛИНЕЙН(y;x);2)

Точность аппроксимации с помощью прямой, вычисленной функцией ЛИНЕЙН, зависит от степени разброса данных. Чем ближе данные к прямой, тем более точной является модель, используемая функцией ЛИНЕЙН. Функция ЛИНЕЙН использует метод наименьших квадратов для определения наилучшей аппроксимации данных.

Проводя регрессионный анализ, Microsoft Excel вычисляет для каждой точки квадрат разности между прогнозируемым значением y и фактическим значением y. Сумма этих квадратов разностей называется остаточной суммой квадратов. Затем Microsoft Excel подсчитывает сумму квадратов разностей между фактическими значениями y и средним значением y, которая называется общей суммой квадратов (регрессионая сумма квадратов + остаточная сумма квадратов). Чем меньше остаточная сумма квадратов по сравнению с общей суммой квадратов, тем больше значение коэффициента детерминированности r2, который показывает, насколько хорошо уравнение, полученное с помощью регрессионного анализа, объясняет взаимосвязи между переменными.

Заметьте, что значения y, предсказанные с помощью уравнения регрессии, возможно не будут правильными, если они располагаются вне интервала значений y, которые использовались для определения уравнения.

Пример 1 Наклон и Y-пересечение

ЛИНЕЙН({1;9;5;7};{0;4;2;3}) равняется {2;1}, наклон = 2 и y-пересечение = 1.

Использование статистик F и R2

Можно использовать F-статистику, чтобы определить, является ли результат с высоким значение r2 случайным. Если F-наблюдаемое больше, чем F-критическое, то взаимосвязь между переменными имеется. F-критическое можно получить из таблицы F-критических значений в любом справочнике по математической статистике. Для того, чтобы найти это значение, используя односторонний тест, положим величину Альфа (величина Альфа используется для обозначения вероятности ошибочного вывода о том, что имеется сильная взаимозависимость) равной 0,05, а для числа степеней свободы (обозначаемых обычно v1 и v2), положим v1 = k = 4 и v2 = n - (k + 1) = 11 - (4 + 1) = 6, где k - это число переменных, а n - число точек данных. Из таблицы справочника F-критическое равно 4,53. Наблюдаемое F-значение равно 459,753674 (это значение получено в опущенном нами примере), что заметно больше чем F-критическое значение 4,53. Следовательно, полученное регрессионное уравнение полезно для предсказания искомого результата.

Фактические значения интересующей нас величины отличаются от рассчитанных по уравнению регрессии. Чем меньше это отличие, чем ближе рассчитанные значения подходят к эмпирическим данным, тем лучше качество модели. Величина отклонений фактических и расчетных значений переменной величины по каждому наблюдению представляет собой ошибку аппроксимации. Так как отклонение может быть величиной как положительной, так и отрицательной, то ошибки аппроксимации для каждого наблюдения принято определять в процентах по модулю.

Отклонения () рассматриваются как абсолютная ошибка аппроксимации, тогда – относительная ошибка аппроксимации.

Средняя ошибка аппроксимации определяется как среднее арифметическое: . Иногда пользуются определением средней ошибки аппроксимации, имеющим вид .

Конец работы -

Эта тема принадлежит разделу:

Эконометрика

На сайте сайт читайте: экономических специальностей..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Состав исходной информации
Основной базой исходной информации для эконометрических исследований служат данные статистики либо данные бухгалтерского учета. Исследуемые эконометрикой взаимосвязи стохастичны по своей природе, т

Интерполяционный полином Лагранжа
Пусть имеется зависимость y = f(x) между величинами x и y, для которой нам известны отдельные точки (xi,yi), i = 0,1,2,…,

Случай 1.
Через одну точку (x0, y0) можно провести пучок прямых y = y0+b(x-x0) (2.1) (а также вертикальную пря

Случай 2.
Через две различные точки (x0,y0), (x1,y1) проходит одна и только одна прямая. Если x0 ¹

Случай 3.
Многочлен второй степени (квадратичная функция), график которой проходит через три точки (x0,y0), (x1,y1), (x2

Случай n.
Теперь ясно, что интерполяционный полином Лагранжа n-ой степени, график которого проходит через n+1 точку (xi,yi), i=0,1,2,…,n, можно записать в ви

Парная линейная регрессия. Метод наименьших квадратов
Пусть имеется n пар чисел (xi, yi), i=1,2,…,n, относительно которых предполагается, что они отвечают линейной зависимости между величинами x и y:

Множественная линейная регрессия
Парная регрессия может дать хороший результат при моделировании, если влиянием других факторов, воздействующих на объект исследования, можно пренебречь. Но, существует обычно нескол

Нелинейные модели
Мы изучили применение метода наименьших квадратов для определения параметров, которые входят в функциональные зависимости линейно. Поэтому для них в параграфах 3 и 4 получились сист

Системы одновременных эконометрических уравнений
Объектом статистического изучения в социально-экономических науках являются сложные системы. Измерение тесноты связей между переменными, построение изолированных уравнений регрессии

Составляющие временного ряда
Временной ряд x(t) – это множество значений величины x, отвечающих последовательности моментов времени t, т.е. это функция t®x(t), которая обычно считает

Определение составляющих временного ряда
Одним из наиболее распространенных способов моделирования тенденции временного ряда является построение аналитической функции, характеризующей зависимость последовательных значений

При этом коэффициенты ak, bk будут равны
Если функция x (t) четная, т.е. выполняется равенство x (-t) = x (t), то в

Временной ряд как случайный процесс
Пусть значение экономического показателя x(t) в любой момент времени t представляет собой случайную величину X (t). Предположим, что слу

Модели ARIMA
В эконометрике анализ временных рядов с использованием оценки спектральной плотности (спектральный анализ) играет, как правило, вспомогательную роль, помогая установить периоды хара

Учет сезонных составляющих
Обобщение модели ARIMA, позволяющие учесть периодические (сезонные) составляющие временного ряда было предложено Дж. Боксом и Г. Дженкинсом . Этот метод реализован в систе

Анализ погрешностей исходной информации
Значения экономических показателей обычно известны неточно, с некоторой погрешностью. Рассмотрим основные правила обработки данных, содержащих погрешности, или ошибки измерений. Пус

Доверительные интервалы
Введем случайную величину. (13.1) Нетрудно проверить, что xÎN(0,1), вследствие ч

Расчет погрешностей
Эмпирические данные часто подвергаются математической обработке – над ними выполняются арифметические операции сложения, вычитания, умножения и деления, в некоторых случаях

Коэффициент детерминации
Коэффициент детерминации характеризует качество регрессионной модели. Значения различных величин, получ

Принцип максимального правдоподобия. Построение регрессионных моделей при гетероскедастичности ошибок
Для нахождения неизвестных величин по результатам измерений, содержащих случайные погрешности, служит метод наименьших квадратов (МНК). Определяемые величины обычно связаны уравнениями, образующими

Статистические гипотезы
В предыдущих параграфах рассматривалась методика моделирования взаимосвязей экономических показателей и процессов. С помощью полученных уравнений регрессии моделировалась эта связь.

F – статистика
Значимость регрессионной модели определяется с помощью F-критерия Фишера. Для этого вычисляется отношение

T – статистика
Для оценки значимости отдельных параметров регрессионной модели y=a+bx+e их величина сравнивается с их стандартной ошибкой. При этом рассчитывается так называемый

Показатели корреляции и детерминации

Линейной парной регрессии

Опираясь на вспомогательные данные, которые рассчитаны в табл. 2, рассчитываем показатель тесноты связи.

Таким показателем является выборочный линейный коэффициент корреляции, рассчитываемый с использованием формулы.

По результатам расчета коэффициента корреляции можно сделать вывод, что связь между факторным и результативным признаком прямая и сильная (по шкале Чеддока).

Квадрат коэффициента корреляции называется коэффициентом детерминации, который показывает долю вариации результативного признака, объясненную вариацией факторного признака.

Обычно, давая интерпретацию коэффициента детерминации, его выражают в процентах.

R 2 = 0.847 2 = 0.7181

т.е. в 71.81% случаев изменения факторного признака приводит к изменению и результатирующего признака. Точность подбора уравнения регрессии довольно высокая. Остальные 28.19% изменения Y объясняются факторами, не учтенными в модели.

Степенной парной регрессии

Тесноту связи результатирующего и факторного признака для степенной парной регрессии определим с использованием коэффициента корреляции:

Подставив известные данные, получим:

Показатель детерминации.

т.е. в 69% случаев изменения факторного признака приводит к изменению и результатирующего признака. Точность подбора уравнения регрессии - средняя. Остальные 31% изменения Y объясняются факторами, не учтенными в модели.

Средняя ошибка аппроксимации

Линейной парной регрессии

Оценим качество уравнения регрессии с помощью ошибки абсолютной аппроксимации. Средняя ошибка аппроксимации - среднее отклонение расчетных значений от фактических:

Степенной парной регрессии

Средняя ошибка аппроксимации - среднее отклонение расчетных значений от фактических:

Ошибка аппроксимации в пределах 5%-7% свидетельствует о хорошем подборе уравнения регрессии к исходным данным.

Поскольку ошибка больше 7%, то данное уравнение не желательно использовать в качестве регрессии.

Оценка с помощью F-критерия Фишера статистической надежности результатов регрессионного моделирования

Линейной парной регрессии

Коэффициент детерминации R 2 используется для проверки существенности уравнения линейной регрессии в целом.

Проверка значимости модели регрессии проводится с использованием F-критерия Фишера, расчетное значение которого находится как отношение дисперсии исходного ряда наблюдений изучаемого показателя и несмещенной оценки дисперсии остаточной последовательности для данной модели.

Если расчетное значение с k 1 =(m) и k 2 =(n-m-1) степенями свободы больше табличного при заданном уровне значимости, то модель считается значимой.

Оценка статистической значимости парной линейной регрессии производится по следующему алгоритму:

где m=1 для парной регрессии.

Поскольку фактическое значение F >

Степенной парной регрессии

Аналогично линейной парной регрессии проведем оценку степенной парной регрессии

где m - число факторов в модели.

1. Выдвигается нулевая гипотеза о том, что уравнение в целом статистически незначимо: H 0: R 2 =0 на уровне значимости б.

2. Определяем фактическое значение F-критерия:

где m=1 для парной регрессии.

3. Табличное значение определяется по таблицам распределения Фишера для заданного уровня значимости, принимая во внимание, что число степеней свободы для общей суммы квадратов (большей дисперсии) равно 1 и число степеней свободы остаточной суммы квадратов (меньшей дисперсии) при линейной регрессии равно n-2.

F табл - это максимально возможное значение критерия под влиянием случайных факторов при данных степенях свободы и уровне значимости б. Уровень значимости б - вероятность отвергнуть правильную гипотезу при условии, что она верна. Обычно б принимается равной 0,05 или 0,01.

4. Если фактическое значение F-критерия меньше табличного, то говорят, что нет основания отклонять нулевую гипотезу.

В противном случае, нулевая гипотеза отклоняется и с вероятностью (1-б) принимается альтернативная гипотеза о статистической значимости уравнения в целом.

Табличное значение критерия со степенями свободы:

k 1 =1 и k 2 =8, F табл = 5.32

Поскольку фактическое значение F > F табл, то коэффициент детерминации статистически значим (найденная оценка уравнения регрессии статистически надежна).

По результатам анализа делаем вывод, что коэффициенты детерминации как для линейной парной регрессии, так и для степенной парной регрессии являются статистически значимыми.

Поскольку линейная парная регрессии имеет выше коэффициент (показательно) детерминации, считаем, что именно она адекватно описывает зависимость между факторным и результатирующим признаком.