Решение по правилу лопиталя. Правило Лопиталя: теория и примеры решений

Пусть при $x\to a$ функции $f(x)$ и $\varphi(x)$ обе бесконечно малые или обе бесконечно большие. Тогда их отношение не определено в точке $x=a$ , и в этом случае говорят, что оно представляет собой неопределенность типа $\left[\frac{0}{0}\right]$ или соответственно. Это отношение может иметь конечный или бесконечный предел в точке $x=a$ . Нахождение этого предела называется раскрытием неопределенности.

t_E1_p217_1
Теорема (Теорема Лопиталя-Бернулли.)
Пусть в некоторой окрестности $P$ точки $x=a$ функции $f(x)$ и $g(x)$ дифференцируемы всюду, кроме, может быть, самой точки $x=a$ , и пусть $g"(x)\neq0$ на $P$ . Если функции $f(x)$ и $\varphi(x)$ являются одновременно либо бесконечно малыми, либо бесконечно большими при $x\to a$ и при этом существует предел отношения $\frac{f"(x)}{\varphi"(x)}$ их производных при $x\to a$ , то тогда существует также и предел отношения $\frac{f(x)}{g(x)}$ самих функций, причем

(1)

\begin{align} \lim\limits_{x\to a}\frac{f(x)}{g(x)}=\lim\limits_{x\to a}\frac{f"(x)}{g"(x)}. \end{align}

Правило () применимо и в случае, когда $a=\infty$ .

m_KR_p156_1
Метод (Правило Лопиталя. Раскрытие неопределенностей типа $\left[\frac{0}{0}\right]$ и $\left[\frac{\infty}{\infty}\right]$ .)
В силу теоремы () существует общий способ нахождения предела отношений двух функций, основанный на равенстве
$$\lim\limits_{x\to a}\frac{f(x)}{g(x)}=\lim\limits_{x\to a}\frac{f"(x)}{g"(x)}.$$
Этот способ называется правилом Лопиталя .
Если для производных $f"(x)$ и $g"(x)$ выполняются условия теоремы (), то правило Лопиталя можно применять повторно:
$$\lim\limits_{x\to a}\frac{f(x)}{g(x)}=\lim\limits_{x\to a}\frac{f"(x)}{g"(x)}=\lim\limits_{x\to a}\frac{f""(x)}{g""(x)}.$$
При этом на каждом этапе применения правила Лопиталя следует пользоваться упрощающими отношение тождественными преобразованиями, а также комбинировать это правило с любыми другими приемами вычисления пределов.

e_E1_p218_1

Пример
Найти $$\lim\limits_{x\to0}\frac{e^{2x}-1}{\arctan5x}.$$
Используя формулу (), получаем: $$\lim\limits_{x\to0}\frac{e^{2x}-1}{\arctan5x}=\left[\frac{0}{0}\right]=\lim\limits_{x\to0}\frac{2e^{2x}}{\frac{1}{1+25x^2}\cdot5}=\frac{2}{5},$$ поскольку $e^{2x}\to1$ и $\frac{1}{1+25x^2}\to1$ при $x\to0$ .

e_E1_p218_1

Пример
Найти $$\lim\limits_{x\to\infty}\frac{\ln2x}{x^3}.$$
Применяя дважды формулу (), получаем: $$\lim\limits_{x\to+\infty}\frac{\ln^2x}{x^3}=\left[\frac{\infty}{\infty}\right]=\lim\limits_{x\to+\infty}\frac{\frac{2\ln x}{x}}{3x^2}=\frac{2}{3}\lim\limits_{x\to+\infty}\frac{\ln x}{x^3}=\frac{2}{3}\lim\limits_{x\to+\infty}\frac{\frac{1}{x}}{3x^2}=0.$$

e_E1_p218_1

Пример
Найти $$\lim\limits_{x\to0}\frac{\tan x-\sin x}{x^3}.$$
Используем формулу (): $$\lim\limits_{x\to0}\frac{\tan x-\sin x}{x^3}=\lim\limits_{x\to 0}\frac{\frac{1}{\cos^2x}-\cos x}{3x^2}=\frac{1}{3}\lim\limits_{x\to0}\frac{1-\cos^3x}{x^2\cos^2x}.$$
Освободим знаменатель дроби от множителя $\cos^2x$ , поскольку он имеет предел $1$ при $x\to0$ . Развернем стоящую в числителе разность кубов и освободим числитель от сомножителя $(1+\cos x+\cos^2x)$ , имеющего предел $3$ при $x\to0$ . После этих упрощений получаем $$\lim\limits_{x\to0}\frac{\tan x-\sin x}{x^3}=\lim\limits_{x\to0}\frac{1-\cos x}{x^2}.$$
Применим снова формулу (): $$\lim\limits_{x\to0}\frac{\tan x-\sin x}{x^3}=\lim\limits_{x\to0}\frac{1-\cos x}{x^2}=\lim\limits_{x\to0}\frac{\sin x}{2x}.$$
Используя первый замечательный предел, получаем окончательный ответ $\frac{1}{2}$ , уже не прибегая к правилу Лопиталя.

m_E1_p219_1
Метод (Правило Лопиталя. Раскрытие неопределенности типа $\left$ .)
Для вычисления $\lim\limits_{x\to a}f(x)g(x)$ , где $f(x)$ — бесконечно малая, а $g(x)$ — бесконечно большая функции при $x\to a$ , следует преобразовать произведение к виду $\frac{f(x)}{1/g(x)}$ (неопределенность типа $\left[\frac{0}{0}\right]$ ) или к виду $\frac{g(x)}{1/f(x)}$ (неопределенность типа $\left[\frac{\infty}{\infty}\right]$ ) и далее использовать правило Лопиталя.

e_E1_p219_1

Пример
Найти $$\lim\limits_{x\to1}\sin(x-1)\cdot\tan\frac{\pi x}{2}.$$
Имеем: $$\begin{array}{c}\lim\limits_{x\to1}\sin(x-1)\cdot\tan\frac{\pi x}{2}=\left=\lim\limits_{x\to1}\frac{\sin(x-1)}{\cot\frac{\pi x}{2}}=\left[\frac{0}{0}\right]=\\=\lim\limits_{x\to1}\frac{\cos(x-1)}{-\frac{\pi}{2}\frac{1}{\sin^2\frac{\pi x}{2}}}=-\frac{2}{\pi}\lim\limits_{x\to1}\cos(x-1)\sin^2\frac{\pi x}{2}=-\frac{2}{\pi}.\end{array}$$

m_E1_p220_1
Метод (Правило Лопиталя. Раскрытие неопределенности типа $\left[\infty-\infty\right]$ .)
Для вычисления $\lim\limits_{x\to a}(f(x)-g(x))$ , где $f(x)$ и $g(x)$ — бесконечно большие функции при $x\to a$ , следует преобразовать разность к виду $f(x)\left(1-\frac{g(x)}{f(x)}\right)$ , затем раскрыть неопределенность $\frac{g(x)}{f(x)}$ типа $\left[\frac{\infty}{\infty}\right]$ . Если $\lim\limits_{x\to a}\frac{g(x)}{f(x)}\neq1$ , то $\lim\limits_{x\to a}(f(x)-\varphi(x))=\infty$ . Если же $\lim\limits_{x\to a}\frac{\varphi(x)}{f(x)}=1$ , то получаем неопределенность типа $[\infty\cdot0]$ , рассмотренную ранее.

e_E1_p220_1

Пример
Найти $$\lim\limits_{x\to+\infty}(x-\ln^3x).$$
Имеем: $$\lim\limits_{x\to+\infty}(x-\ln^3x)=[\infty-\infty]=\lim\limits_{x\to+\infty}x\left(1-\frac{\ln^3x}{x}\right).$$
Так как $$\begin{array}{c}\lim\limits_{x\to+\infty}\frac{\ln^3x}{x}=\left[\frac{\infty}{\infty}\right]=\lim\limits_{x\to+\infty}\frac{3\ln^2x\cdot\frac{1}{x}}{1}=3\lim\limits_{x\to+\infty}\frac{\ln^2x}{x}=\\=3\lim\limits_{x\to+\infty}\frac{2\ln x\cdot\frac{1}{x}}{1}=6\lim\limits_{x\to+\infty}\frac{\ln x}{x}=6\lim\limits_{x\to+\infty}\frac{\frac{1}{x}}{1}=6\lim\limits_{x\to+\infty}\frac{1}{x}=0,\end{array}$$ то $$\lim\limits_{x\to+\infty}(x-\ln^3x)=+\infty.$$

m_E1_p221_1
Метод (Правило Лопиталя. Раскрытие неопределенностей типа $\left$ , $\left[\infty^0\right]$ , $\left$ .)
Во всех трех случаях имеется в виду вычисление предела выражения $\left(f(x)\right)^{g(x)}$ , где $f(x)$ есть в первом случае бесконечно малая, во втором случае — бесконечно большая, в третьем случае — функция, имеющая предел равный единице. Функция же $g(x)$ в первых двух случаях является бесконечно малой, а в третьем случае — бесконечно большой.
Логарифмируя выражение $\left(f(x)\right)^{g(x)}$ , получим равенство
$$\ln y=g(x)\ln f(x).$$
Найдем предел $\ln y$ , после чего найдем предел $y$ . Во всех трех случаях $\ln y$ является неопределенностью типа $$ , метод раскрытия которой изложен ранее.

e_E1_p221_1

Пример
Найти $$\lim\limits_{x\to+\infty}\left(1+\frac{1}{x}\right)^{2x}.$$
Введем обозначение $y=\left(1+\frac{1}{x}\right)^{2x}$ . Тогда $\ln y=2x\ln\left(1+\frac{1}{x}\right)$ является неопределенностью $[\infty\cdot0]$ . Преобразуя выражение $\ln y$ к виду $\ln y=2\frac{\ln\left(1+\frac{1}{x}\right)}{1/x}$ , находим по правилу Лопиталя $$\lim\limits_{x\to+\infty}\ln y=2\lim\limits_{x\to+\infty}\frac{\frac{1}{1+\frac{1}{x}}\left(-\frac{1}{x^2}\right)}{-\frac{1}{x^2}}=2\lim\limits_{x\to+\infty}\frac{1}{1+\frac{1}{x}}=2.$$
Следовательно, $$\lim\limits_{x\to+\infty}y=\lim\limits_{x\to+\infty}\left(1+\frac{1}{x}\right)^{2x}=e^2.$$

Раскрытие неопределённостей вида 0/0 или ∞/∞ и некоторых других неопределённостей, возникающих при вычислении предела отношения двух бесконечно малых или бесконечно больших функций значительно упрощается с помощью правила Лопиталя (на самом деле двух правил и замечаний к ним).

Суть правил Лопиталя состоит в том, что в случае, когда вычисление предела отношений двух бесконечно малых или бесконечно больших функций даёт неопределённости видов 0/0 или ∞/∞, предел отношения двух функций можно заменить пределом отношения их производных и, таким образом, получить определённный результат.

Перейдём к формулировкам правил Лопиталя.

Правило Лопиталя для случая предела двух бесконечно малых величин . Если функции f (x ) и g (x a a , причём в этой окрестности g "(x a равны между собой и равны нулю

().

Правило Лопиталя для случая предела двух бесконечно больших величин . Если функции f (x ) и g (x ) дифференцируемы в некоторой окрестности точки a , за исключением, может быть, самой точки a , причём в этой окрестности g "(x )≠0 и если и если пределы этих функций при стремлении икса к значению функции в точке a равны между собой и равны бесконечности

(),

то предел отношения этих функций равен пределу отношения их производных

().

Иными словами, для неопределённостей вида 0/0 или ∞/∞ предел отношения двух функций равен пределу отношения их производных, если последний существует (конечный или бесконечный).

Замечания .

1. Правила Лопиталя применимы и тогда, когда функции f (x ) и g (x ) не определены при x = a .

2. Если при вычисления предела отношения производных функций f (x ) и g (x ) снова приходим к неопределённости вида 0/0 или ∞/∞, то правила Лопиталя следует применять многократно (минимум дважды).

3. Правила Лопиталя применимы и тогда, когда аргумент функций (икс) стремится не к конечному числу a , а к бесконечности (x → ∞).

К неопределённостям видов 0/0 и ∞/∞ могут быть сведены и неопределённости других видов.

Раскрытие неопределённостей видов "ноль делить на ноль" и "бесконечность делить на бесконечность"

Пример 1.

x =2 приводит к неопределённости вида 0/0. Поэтому производную каждой функции и получаем

В числителе вычисляли производную многочлена, а в знаменателе - производную сложной логарифмической функции . Перед последним знаком равенства вычисляли обычный предел , подставляя вместо икса двойку.

Пример 2. Вычислить предел отношения двух функций, пользуясь правилом Лопиталя:

Решение. Подстановка в заданную функцию значения x

Пример 3. Вычислить предел отношения двух функций, пользуясь правилом Лопиталя:

Решение. Подстановка в заданную функцию значения x =0 приводит к неопределённости вида 0/0. Поэтому вычисляем производные функций в числителе и знаменателе и получаем:

Пример 4. Вычислить

Решение. Подстановка в заданную функцию значения икса, равного плюс бесконечности, приводит к неопределённости вида ∞/∞. Поэтому применим правило Лопиталя:

Замечание. Переходим к примерам, в которых правило Лопиталя приходится применять дважды, то есть приходить к пределу отношений вторых производных, так как предел отношения первых производных представляет собой неопределённость вида 0/0 или ∞/∞.

Применить правило Лопиталя самостоятельно, а затем посмотреть решение

Раскрытие неопределённостей вида "ноль умножить на бесконечность"

Пример 12. Вычислить

.

Решение. Получаем

В этом примере использовано тригонометрическое тождество .

Раскрытие неопределённостей видов "ноль в степени ноль", "бесконечность в степени ноль" и "один в степени бесконечность"

Неопределённости вида , или обычно приводятся к виду 0/0 или ∞/∞ с помощью логарифмирования функции вида

Чтобы вычислить предел выражения , следует использовать логарифмическое тождество , частным случаем которого является и свойство логарифма .

Используя логарифмическое тождество и свойство непрерывности функции (для перехода за знак предела), предел следует вычислять следующим образом:

Отдельно следует находить предел выражения в показателе степени и возводить e в найденную степень.

Пример 13.

Решение. Получаем

.

.

Пример 14. Вычислить, пользуясь правилом Лопиталя

Решение. Получаем

Вычисляем предел выражения в показателе степени

.

.

Пример 15. Вычислить, пользуясь правилом Лопиталя

Этот математический калькулятор онлайн поможет вам если нужно вычислить предел функции . Программа решения пределов не просто даёт ответ задачи, она приводит подробное решение с пояснениями , т.е. отображает процесс вычисления предела.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Введите выражение функции
Вычислить предел

Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу.

У вас в браузере отключено выполнение JavaScript.
Чтобы решение появилось нужно включить JavaScript.
Вот инструкции, как включить JavaScript в вашем браузере .

Т.к. желающих решить задачу очень много, ваш запрос поставлен в очередь.
Через несколько секунд решение появится ниже.
Пожалуйста подождите сек...


Если вы заметили ошибку в решении , то об этом вы можете написать в Форме обратной связи .
Не забудте указать какую задачу вы решаете и что вводите в поля .



Наши игры, головоломки, эмуляторы:

Немного теории.

Предел функции при х->х 0

Пусть функция f(x) определена на некотором множестве X и пусть точка \(x_0 \in X \) или \(x_0 \notin X \)

Возьмем из X последовательность точек, отличных от х 0:
x 1 , x 2 , x 3 , ..., x n , ... (1)
сходящуюся к х*. Значения функции в точках этой последовательности также образуют числовую последовательность
f(x 1), f(x 2), f(x 3), ..., f(x n), ... (2)
и можно ставить вопрос о существовании ее предела.

Определение . Число А называется пределом функции f(х) в точке х = х 0 (или при х -> x 0), если для любой сходящейся к x 0 последовательности (1) значений аргумента x, отличных от x 0 соответствующая последовательность (2) значений функции сходится к числу A.


$$ \lim_{x\to x_0}{ f(x)} = A $$

Функция f(x) может иметь в точке x 0 только один предел. Это следует из того, что последовательность
{f(x n)} имеет только один предел.

Существует другое определение предела функции.

Определение Число А называется пределом функции f(x) в точке х = x 0 , если для любого числа \(\varepsilon > 0 \) существует число \(\delta > 0 \) такое, что для всех \(x \in X, \; x \neq x_0 \), удовлетворяющих неравенству \(|x-x_0| Используя логические символы, это определение можно записать в виде
\((\forall \varepsilon > 0) (\exists \delta > 0) (\forall x \in X, \; x \neq x_0, \; |x-x_0| Отметим, что неравенства \(x \neq x_0, \; |x-x_0| Первое определение основано на понятии предела числовой последовательности, поэтому его часто называют определением «на языке последовательностей». Второе определение называют определением «на языке \(\varepsilon - \delta \)».
Эти два определения предела функции эквивалентны и можно использовать любое из них в зависимости от того, какое более удобно при решении той или иной задачи.

Заметим, что определение предела функции «на языке последовательностей» называют также определением предела функции по Гейне, а определение предела функции «на языке \(\varepsilon - \delta \)» - определением предела функции по Коши.

Предел функции при x->x 0 - и при x->x 0 +

В дальнейшем будут использованы понятия односторонних пределов функции, которые определяются следующим образом.

Определение Число А называется правым (левым) пределом функции f(x) в точке x 0 , если для любой сходящейся к x 0 последовательности (1), элементы x n которой больше (меньше) x 0 , соответствующая последовательность (2) сходится к А.

Символически это записывается так:
$$ \lim_{x \to x_0+} f(x) = A \; \left(\lim_{x \to x_0-} f(x) = A \right) $$

Можно дать равносильное определение односторонних пределов функции «на языке \(\varepsilon - \delta \)»:

Определение число А называется правым (левым) пределом функции f(х) в точке x 0 , если для любого \(\varepsilon > 0 \) существует \(\delta > 0 \) такое, что для всех x, удовлетворяющих неравенствам \(x_0 Символические записи:

\((\forall \varepsilon > 0) (\exists \delta > 0) (\forall x, \; x_0

Мы уже начали разбираться с пределами и их решением. Продолжим по горячим следам и разберемся с решением пределов по правилу Лопиталя . Этому простому правилу по силам помочь Вам выбраться из коварных и сложных ловушек, которые преподаватели так любят использовать в примерах на контрольных по высшей математике и матанализу. Решение правилом Лопиталя – простое и быстрое. Главное – уметь дифференцировать.

Правило Лопиталя: история и определение

На самом деле это не совсем правило Лопиталя, а правило Лопиталя-Бернулли . Сформулировал его швейцарский математик Иоганн Бернулли , а француз Гийом Лопиталь впервые опубликовал в своем учебнике бесконечно малых в славном 1696 году. Представляете, как людям приходилось решать пределы с раскрытием неопределенностей до того, как это случилось? Мы – нет.

Прежде чем приступать к разбору правила Лопиталя, рекомендуем прочитать вводную статью про и методы их решений. Часто в заданиях встречается формулировка: найти предел, не используя правило Лопиталя. О приемах, которые помогут Вам в этом, также читайте в нашей статье.

Если имеешь дело с пределами дроби двух функций, будь готов: скоро встретишься с неопределенностью вида 0/0 или бесконечность/бесконечность. Как это понимать? В числителе и знаменателе выражения стремятся к нулю или бесконечности. Что делать с таким пределом, на первый взгляд – совершенно непонятно. Однако если применить правило Лопиталя и немного подумать, все становится на свои места.

Но сформулируем правило Лопиталя-Бернулли. Если быть совершенно точными, оно выражается теоремой. Правило Лопиталя, определение:

Если две функции дифференцируемы в окрестности точки x=a обращаются в нуль в этой точке, и существует предел отношения производных этих функций, то при х стремящемся к а существует предел отношения самих функций, равный пределу отношения производных.

Запишем формулу, и все сразу станет проще. Правило Лопиталя, формула:

Так как нас интересует практическая сторона вопроса, не будем приводить здесь доказательство этой теоремы. Вам придется или поверить нам на слово, или найти его в любом учебнике по математическому анализу и убедится, что теорема верна.

Кстати! Для наших читателей сейчас действует скидка 10% на

Раскрытие неопределенностей по правилу Лопиталя

В раскрытии каких неопределенностей может помочь правило Лопиталя? Ранее мы говорили в основном о неопределенности 0/0 . Однако это далеко не единственная неопределенность, с которой можно встретиться. Вот другие виды неопределенностей:

Рассмотрим преобразования, с помощью которых можно привести эти неопределенности к виду 0/0 или бесконечность/бесконечность. После преобразования можно будет применять правило Лопиталя-Бернулли и щелкать примеры как орешки.

Неопределенность вида бесконечность/бесконечность сводится к неопределенность вида 0/0 простым преобразованием:

Пусть есть произведение двух функций, одна из которых первая стремиться к нулю, а вторая – к бесконечности. Применяем преобразование, и произведение нуля и бесконечности превращается в неопределенность 0/0 :

Для нахождения пределов с неопределенностями типа бесконечность минус бесконечность используем следующее преобразование, приводящее к неопределенности 0/0 :

Для того чтобы пользоваться правилом Лопиталя, нужно уметь брать производные. Приведем ниже таблицу производных элементарных функций, которой Вы сможете пользоваться при решении примеров, а также правила вычисления производных сложных функций:

Теперь перейдем к примерам.

Пример 1

Найти предел по правилу Лопиталя:

Пример 2

Вычислить с использованием правила Лопиталя:

Важный момент! Если предел вторых и последующих производных функций существует при х стремящемся к а , то правило Лопиталя можно применять несколько раз.

Найдем предел (n натуральное число). Для этого применим правило Лопиталя n раз:

Желаем удачи в освоении математического анализа. А если Вам понадобится найти предел используя правило Лопиталя, написать реферат по правилу Лопиталя, вычислить корни дифференциального уравнения или даже рассчитать тензор инерции тела, обращайтесь к нашим авторам . Они с радостью помогут разобраться в тонкостях решения.

Инструкция

Неопределенность вида [∞-∞], раскрывается, если имеется в виду разность каких-либо дробей. Приведя эту разность к общему знаменателю, получите некоторое отношение функций.

Неопределенности типа 0^∞, 1^∞, ∞^0 возникают при вычислении типа p(x)^q(x). В этом случае применяют предварительное дифференцирование. Тогда искомого предела А примет вид произведения, возможно, что с готовым знаменателем. Если нет, то можно использовать методику примера 3. Главное не забыть записать окончательный ответ в виде е^А (см. рис.5).

Видео по теме

Источники:

  • вычислить предел функции не пользуясь правилом лопиталя в 2019

Инструкция

Пределом называется некоторое число, к которому стремится переменная переменная или значение выражения. Обычно переменные или функции стремятся либо к нулю, либо к бесконечности. При пределе, нулю, величина считается бесконечно малой. Иными словами, бесконечно малыми называются величины, которые переменны и приближаются к нулю. Если стремится к бесконечности, то его называют бесконечным пределом. Обычно он записывается в виде:
lim x=+∞.

У есть ряд свойств, некоторые из которых представляют собой . Ниже представлены основные из них.
- одна величина имеет только один предел;

Предел постоянной величины равен величине этой постоянной;

Предел суммы равен сумме пределов: lim(x+y)=lim x + lim y;

Предел произведения равен произведению пределов: lim(xy)=lim x * lim y

Постоянный множитель может быть вынесен за знак предела: lim(Cx) = C * lim x, где C=const;

Предел частного равен частному пределов: lim(x/y)=lim x / lim y.

В задачах с пределами встречаются как числовые выражения, так и этих выражений. Это может выглядеть, в частности, следующим образом:
lim xn=a (при n→∞).
Ниже представлен несложного предела:
lim 3n +1 /n+1

n→∞.
Для решения этого предела поделите все выражение на n единиц. Известно, что если единица делится на некоторую величину n→∞, то предел 1/n равен нулю. Справедливо и обратное: если n→0, то 1/0=∞. Поделив весь пример на n, запишите его в представленном ниже виде и получите :
lim 3+1/n/1+1/n=3

При решении на пределы могут возникать результаты, которые называются неопределенностями. В таких случаях применяют правила Лопиталя. Для этого производят повторное функции, которое приведет пример в такую форму, в которой его можно было решить. Существуют два типа неопределенностей: 0/0 и ∞/∞. Пример c неопределенностью может выглядеть, в частности, следующим обращом:
lim 1-cosx/4x^2=(0/0)=lim sinx/8x=(0/0)=lim cosx/8=1/8

Видео по теме

Расчет пределов функций - фундамент математического анализа, которому посвящено немало страниц в учебниках. Однако подчас не понятно не только определение, но и сама суть предела. Говоря простым языком, предел - это приближение одной переменной величины, которая зависит от другой, к какому-то конкретному единственному значению по мере изменения этой другой величины. Для успешного вычисления достаточно держать в уме простой алгоритм решения.