Числовой коэффициент выражения: определение, примеры. Числовой коэффициент выражения, определение, примеры

В математике одним из параметров, описывающих положение прямой на декартовой плоскости координат, является угловой коэффициент этой прямой. Этот параметр характеризует наклон прямой к оси абцисс. Чтобы понять, как найти угловой коэффициент, сначала вспомним общий вид уравнения прямой в системе координат XY.

В общем виде любую прямую можно представить выражением ax+by=c, где a, b и c - произвольные действительные числа, но обязательно a 2 + b 2 ≠ 0.

Подобное уравнение с помощью несложных преобразований можно довести до вида y=kx+d, в котором k и d - действительные числа. Число k является угловым коэффициентом, а само уравнение прямой подобного вида называется уравнением с угловым коэффициентом. Получается, что для нахождения углового коэффициента, необходимо просто привести исходное уравнение к указанному выше виду. Для более полного понимания рассмотрим конкретный пример:

Задача: Найти угловой коэффициент линии, заданной уравнением 36x - 18y = 108

Решение: Преобразуем исходное уравнение.

Ответ: Искомый угловой коэффициент данной прямой равен 2.

В случае, если в ходе преобразований уравнения мы получили выражение типа x = const и не можем в результате представить y в виде функции x, то мы имеем дело с прямой, параллельной оси Х. Угловой коэффициент подобной прямой равен бесконечности.

Для прямых, которых выражены уравнением типа y = const, угловой коэффициент равняется нулю. Это характерно для прямых, параллельных оси абцисс. Например:

Задача: Найти угловой коэффициент линии, заданной уравнением 24x + 12y - 4(3y + 7) = 4

Решение: Приведем исходное уравнение к общему виду

24x + 12y - 12y + 28 = 4

Из полученного выражения выразить y невозможно, следовательно угловой коэффициент данной прямой равен бесконечности, а сама прямая будет параллельна оси Y.

Геометрический смысл

Для лучшего понимания обратимся к картинке:

На рисунке мы видим график функции типа y = kx. Для упрощения примем коэффициент с = 0. В треугольнике ОАВ отношение стороны ВА к АО будет равно угловому коэффициенту k. Вместе с тем отношение ВА/АО - это тангенс острого угла α в прямоугольном треугольнике ОАВ. Получается, что угловой коэффициент прямой равняется тангенсу угла, который составляет эта прямая с осью абцисс координатной сетки.

Решая задачу, как найти угловой коэффициент прямой, мы находим тангенс угла между ней и осью Х сетки координат. Граничные случаи, когда рассматриваемая прямая параллельна осям координат, подтверждают вышенаписанное. Действительно для прямой, описанной уравнением y=const, угол между ней и осью абцисс равен нулю. Тангенс нулевого угла также равен нулю и угловой коэффициент тоже равен нулю.

Для прямых, перпендикулярных оси абцисс и описываемых уравнением х=const, угол между ними и осью Х равен 90 градусов. Тангенс прямого угла равен бесконечности, так же и угловой коэффициент подобных прямых равен бесконечности, что подтверждает написанное выше.

Угловой коэффициент касательной

Распространенной, часто встречающейся на практике, задачей является также нахождение углового коэффициента касательной к графику функции в некоторой точке. Касательная - это прямая, следовательно к ней также применимо понятие углового коэффициента.

Чтобы разобраться, как найти угловой коэффициент касательной, нам будет необходимо вспомнить понятие производной. Производная от любой функции в некоторой точке - это константа, численно равная тангенсу угла, который образуется между касательной в указанной точке к графику этой функции и осью абцисс. Получается, что для определения углового коэффициента касательной в точке x 0 , нам необходимо рассчитать значение производной исходной функции в этой точке k = f"(x 0). Рассмотрим на примере:

Задача: Найти угловой коэффициент линии, касательной к функции y = 12x 2 + 2xe x при х = 0,1.

Решение: Найдем производную от исходной функции в общем виде

y"(0,1) = 24 . 0,1 + 2 . 0,1 . e 0,1 + 2 . e 0,1

Ответ: Искомый угловой коэффициент в точке х = 0,1 равен 4,831

Одним из основных статистических показателей последовательности чисел является коэффициент вариации. Для его нахождения производятся довольно сложные расчеты. Инструменты Microsoft Excel позволяют значительно облегчить их для пользователя.

Этот показатель представляет собой отношение стандартного отклонения к среднему арифметическому. Полученный результат выражается в процентах.

В Экселе не существует отдельно функции для вычисления этого показателя, но имеются формулы для расчета стандартного отклонения и среднего арифметического ряда чисел, а именно они используются для нахождения коэффициента вариации.

Шаг 1: расчет стандартного отклонения

Стандартное отклонение, или, как его называют по-другому, среднеквадратичное отклонение, представляет собой квадратный корень из . Для расчета стандартного отклонения используется функция СТАНДОТКЛОН . Начиная с версии Excel 2010 она разделена, в зависимости от того, по генеральной совокупности происходит вычисление или по выборке, на два отдельных варианта: СТАНДОТКЛОН.Г и СТАНДОТКЛОН.В .

Синтаксис данных функций выглядит соответствующим образом:

СТАНДОТКЛОН(Число1;Число2;…)
= СТАНДОТКЛОН.Г(Число1;Число2;…)
= СТАНДОТКЛОН.В(Число1;Число2;…)


Шаг 2: расчет среднего арифметического

Среднее арифметическое является отношением общей суммы всех значений числового ряда к их количеству. Для расчета этого показателя тоже существует отдельная функция – СРЗНАЧ . Вычислим её значение на конкретном примере.


Шаг 3: нахождение коэффициента вариации

Теперь у нас имеются все необходимые данные для того, чтобы непосредственно рассчитать сам коэффициент вариации.


Таким образом мы произвели вычисление коэффициента вариации, ссылаясь на ячейки, в которых уже были рассчитаны стандартное отклонение и среднее арифметическое. Но можно поступить и несколько по-иному, не рассчитывая отдельно данные значения.


Существует условное разграничение. Считается, что если показатель коэффициента вариации менее 33%, то совокупность чисел однородная. В обратном случае её принято характеризовать, как неоднородную.

Как видим, программа Эксель позволяет значительно упростить расчет такого сложного статистического вычисления, как поиск коэффициента вариации. К сожалению, в приложении пока не существует функции, которая высчитывала бы этот показатель в одно действие, но при помощи операторов СТАНДОТКЛОН и СРЗНАЧ эта задача очень упрощается. Таким образом, в Excel её может выполнить даже человек, который не имеет высокого уровня знаний связанных со статистическими закономерностями.

На данном уроке мы узнаем о таком понятии, как коэффициент. Также мы рассмотрим несколько задач, на примере которых сможем без труда находить коэффициенты различных выражений.

Это произведение: число 2 умножается на букву .

В таком произведении договорились число называть коэффициентом .

Коэффициент - это числовой множитель в произведении, где есть буква.

Например:

Поэтому коэффициент равен 4.

Поэтому коэффициент 1.

Поэтому коэффициент -1.

Поэтому коэффициент равен 5.

В математике договорились писать коэффициент в начале, поэтому:

Букв может быть несколько, но это не влияет на коэффициент. Например:

Коэффициент -17.

Коэффициент 46.

Если в произведении несколько числовых множителей, то такое выражение может быть упрощено:

Коэффициент в данном выражении - 100.

Числовой множитель в произведении, где есть хотя бы одна буква, называется коэффициентом.

Если чисел несколько, нужно их перемножить, упростить выражение и таким образом будет получен коэффициент.

В одном произведении есть только один коэффициент.

Если есть сумма, например, такая:

То у каждого слагаемого есть коэффициенты: и .

Если числа нет, то можно поставить единицу. Это и есть коэффициент.

, коэффициент 1.

Найти коэффициент: а) ; б) .

а) , коэффициент -50.

б) ,коэффициент .

Итак, коэффициент - это число, которое стоит в произведении с одной или несколькими переменными. Оно может быть целым или дробным, положительным или отрицательным.

При посадке картошки урожай получается в 10 раз больше, чем количество посаженной картошки. Каков будет урожай, если посадили 65 кг?

Решение

А если посажено 90 кг картошки?

А если неизвестно, сколько посажено? Как тогда решать в таком случае?

Если посадили кг, то урожай будет кг.

Итак, 10 - здесь коэффициент (назовем его урожайность), а - переменная. может принимать любые значения, а формула будет рассчитывать величину урожая.

Если урожайность другая, например 9, то формула выглядит так: .

Коэффициент в формуле изменился.

Если рассматривать разные урожайности, то формула по виду будет оставаться такой же, меняться будет только коэффициент.

Значит, можно записать общий вид всех таких формул.

Где - коэффициент; - переменная.

Это урожайность, она может быть равна, например, 10 или 9, как раньше, или другому числу.

Итак, как ответить на вопрос «какой коэффициент в записи ?»?

Если ничего не известно про эту запись, то и являются просто буквами, переменными. Коэффициент единица.

Если же известно, что это часть формулы для расчета урожая картофеля, тогда - это и есть коэффициент.

Иными словами, часто коэффициент может обозначаться буквой.

В математике, физике, других науках много формул, где одна из букв является коэффициентом.

Пример

Плотность вещества в физике обозначается буквой .

Чем больше плотность, тем больше весит один и тот же объем вещества.

Если знать объем вещества и его плотность, то найти массу легко по формуле:

Любой человек, который знаком с этой формулой, на вопрос «какой здесь коэффициент?» ответит «».

Коэффициент - это число в произведении, где есть одна или несколько переменных.

Есть договоренность писать коэффициент перед переменными.

Если числа в произведении нет, то можно поставить множитель 1, он и будет коэффициентом.

Если перед нами известная нам формула, то одна из букв вполне может быть коэффициентом.

Список литературы

  1. Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. Математика 6. - М.: Мнемозина, 2012.
  2. Мерзляк А.Г., Полонский В.В., Якир М.С. Математика 6 класс. - Гимназия, 2006.
  3. Депман И.Я., Виленкин Н.Я. За страницами учебника математики. - Просвещение, 1989.
  4. Рурукин А.Н., Чайковский И.В. Задания по курсу математика 5-6 класс - ЗШ МИФИ, 2011.
  5. Рурукин А.Н., Сочилов С.В., Чайковский К.Г. Математика 5-6. Пособие для учащихся 6-х классов заочной школы МИФИ. - ЗШ МИФИ, 2011.
  6. Шеврин Л.Н., Гейн А.Г., Коряков И.О., Волков М.В. Математика: Учебник-собеседник для 5-6 классов средней школы. Библиотека учителя математики. - Просвещение, 1989.
  1. Интернет портал «Uchportal.ru» ()
  2. Интернет портал «Фестиваль педагогических идей» ()
  3. Интернет портал «School-assistant.ru» ()

Домашнее задание

В математических описаниях часто фигурирует термин «числовой коэффициент», например, в работе с буквенными выражениями и выражениями с переменными. Материал статьи ниже раскрывает понятие этого термина, в том числе, на примере решения задач на нахождение числового коэффициента.

Yandex.RTB R-A-339285-1

Определение числового коэффициента. Примеры

Учебник Н.Я. Виленкина (учебный материал для учащихся 6 классов) задает такое определение числового коэффициента выражения:

Определение 1

Если буквенное выражение является произведением одной или нескольких букв и одного числа, то это число называется числовым коэффициентом выражения .

Числовой коэффициент зачастую называют просто коэффициентом.

Данное определение дает возможность указать примеры числовых коэффициентов выражений.

Пример 1

Рассмотрим произведение числа 5 и буквы a , которое будет иметь следующий вид: 5 · a . Число 5 является числовым коэффициентом выражения согласно определению выше.

Еще пример:

Пример 2

В заданном произведении x · y · 1 , 3 · x · x · z десятичная дробь 1 , 3 – единственным числовой множитель, который и будет служить числовым коэффициентом выражения.

Также разберем такое выражение:

Пример 3

7 · x + y . Число 7 в данном случае не служит числовым коэффициентом выражения, поскольку заданное выражение не является произведением. Но при этом число 7 – числовой коэффициент первого слагаемого в заданном выражении.

Пример 4

Пусть дано произведение 2 · a · 6 · b · 9 · c .

Мы видим, что запись выражения содержит три числа, и, чтобы найти числовой коэффициент исходного выражения, его следует переписать в виде выражения с единственным числовым множителем. Собственно, это и является процессом нахождения числового коэффициента.

Отметим, что произведения одинаковых букв могут быть представлены как степени с натуральным показателем, поэтому определение числового коэффициента верно и для выражений со степенями.

К примеру:

Пример 5

Выражение 3 · x 3 · y · z 2 – по сути оптимизированная версия выражения 3 · x · x · x · y · z · z , где коэффициент выражения – число 3 .

Отдельно поговорим о числовых коэффициентах 1 и - 1 . Они очень редко записаны в явном виде, и в этом их особенность. Когда произведение состоит из нескольких букв (без явного числового множителя), и перед ним обозначен знак плюс или вовсе нет никакого знака, мы можем говорить, что числовым коэффициентом такого выражения является число 1 . Когда перед произведением букв обозначен знак минус, можно утверждать, что в этом случае числовой коэффициент – число - 1 .

Пример 6

К примеру, в произведении - 5 · x + 1 число - 5 будет служить числовым коэффициентом.

По аналогии, в выражении 8 · 1 + 1 x · x число 8 – коэффициент выражения; а в выражении π + 1 4 · sin x + π 6 · cos - π 3 + 2 · x числовой коэффициент - π + 1 4 .

Нахождение числового коэффициента выражения

Выше мы говорили о том, что если выражение представляет собой произведение с единственным числовым множителем, то этот множитель и будет являться числовым коэффициентом выражения. В случае, когда выражение записано в ином виде, предстоит совершить ряд тождественных преобразований, который приведет заданное выражение к виду произведения с единственным числовым множителем.

Пример 7

Задано выражение − 3 · x · (− 6) . Необходимо определить его числовой коэффициент.

Решение

Осуществим тождественное преобразование, а именно произведем группировку множителей, являющихся числами, и перемножим их. Тогда получим: − 3 · x · (− 6) = ((− 3) · (− 6)) · x = 18 · x .

В полученном выражении мы видим явный числовой коэффициент, равный 18 .

Ответ: 18

Пример 8

Задано выражение a - 1 2 · 2 · a - 6 - 2 · a 2 - 3 · a - 3 . Необходимо определить его числовой коэффициент.

Решение

С целью определения числового коэффициента преобразуем в многочлен заданное целое выражение. Раскроем скобки и приведем подобные слагаемые, получим:

a - 1 2 · 2 · a - 6 - 2 · a 2 - 3 · a - 3 = = 2 · a 2 - 6 · a - a + 3 - 2 · a 2 + 6 · a - 3 = - a

Числовым коэффициентом полученного выражения будет являться число - 1 .

Ответ: - 1 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Где x·y , x , y - средние значения выборок; σ(x), σ(y) - среднеквадратические отклонения.
Кроме того, коэффициент линейной парной корреляции может быть определен через коэффициент регрессии b: , где σ(x)=S(x), σ(y)=S(y) - среднеквадратические отклонения, b - коэффициент перед x в уравнении регрессии y=a+bx .

Другие варианты формул:
или

К xy - корреляционный момент (коэффициент ковариации)

Линейный коэффициент корреляции принимает значения от –1 до +1 (см. шкалу Чеддока). Например, при анализе тесноты линейной корреляционной связи между двумя переменными получен коэффициент парной линейной корреляции, равный –1 . Это означает, что между переменными существует точная обратная линейная зависимость.

Геометрический смысл коэффициента корреляции : r xy показывает, насколько различается наклон двух линий регрессии: y(x) и х(у) , насколько сильно различаются результаты минимизации отклонений по x и по y . Чем больше угол между линиями, то тем больше r xy .
Знак коэффициента корреляции совпадает со знаком коэффициента регрессии и определяет наклон линии регрессии, т.е. общую направленность зависимости (возрастание или убывание). Абсолютная величина коэффициента корреляции определяется степенью близости точек к линии регрессии.

Свойства коэффициента корреляции

  1. |r xy | ≤ 1;
  2. если X и Y независимы, то r xy =0, обратное не всегда верно;
  3. если |r xy |=1, то Y=aX+b, |r xy (X,aX+b)|=1, где a и b постоянные, а ≠ 0;
  4. |r xy (X,Y)|=|r xy (a 1 X+b 1 , a 2 X+b 2)|, где a 1 , a 2 , b 1 , b 2 – постоянные.

Инструкция . Укажите количество исходных данных. Полученное решение сохраняется в файле Word (см. Пример нахождения уравнения регрессии). Также автоматически создается шаблон решения в Excel . .

Количество строк (исходных данных)
Заданы итоговые значения величин (∑x, ∑x 2 , ∑xy, ∑y, ∑y 2)