1 какой уровень организации жизни является высшим. Тканевый уровень

Основные свойства живых организмов. Вопросы о происхождении жизни, закономерностях исторического развития в различные геологические эпохи всегда интересовали человечество. Понятие жизнь охватывает совокупность всех живых организмов на Земле и условия их существования.
Сущность жизни заключается в том, что живые организмы оставляют после себя потомство. Наследственная информация передается из поколения в поколение, организмы саморегулируются и восстанавливаются при воспроизводстве потомства. Жизнь — это особая качественная, наивысшая форма материи, способная, оставляя потомство, к самовоспроизведению.
Понятию жизнь в разных исторических периодах давались различные определения. Первое научно правильное определение дал Ф. Энгельс: "Жизнь есть способ существования белковых тел, и этот способ существования состоит по своему существу в постоянном самообновлении химических составных частей этих тел". При прекращении процесса обмена веществ между живыми организмами и окружающей средой белки распадаются, и жизнь исчезает. Опираясь на современные достижения биологической науки, русский ученый М. В. Волькенштейн дал новое определение понятию жизнь: "Живые тела, существующие на Земле, представляют собой открытые, саморегулирующиеся и самовоспроизводящиеся системы, построенные из биополимеров — белков и нуклеиновых кислот". Это определение не отрицает наличие жизни и на других планетах космического пространства. Жизнь называется открытой системой, на что указывает непрерывный процесс обмена веществ и энергии с окружающей средой.
На основании последних научных достижений современной биологической науки дано следующее определение жизни: "Жизнь — это открытые саморегулирующиеся и самовоспроизводящиеся системы совокупностей живых организмов, построенные из сложных биологических полимеров — белков и нуклеиновых кислот".
Основой всего живого считаются нуклеиновые кислоты и белки, так как они функционируют в клетке, образовывают сложные соединения, которые входят в структуру всех живых организмов.
,

Основные свойства живых организмов

Живые организмы отличаются от неживой природы присущими им свойствами. К характерным свойствам живых организмов относятся: единство химического состава, обмен веществ и энергии, сходство уровней организации. Для живых организмов характерны также размножение, наследственность, изменчивость, рост и развитие, раздражимость, дискретность, саморегуляция, ритмичность и др.

Уровни организации жизни

Все живые организмы в природе состоят из одинаковых уровней организации, это общая для всех живых организмов характерная биологическая закономерность. Выделяют следующие уровни организации живых организмов — молекулярный, клеточный, тканевый, органный, организменный, популяционно-видовой, биогеоценотический, биосферный.
1. Молекулярно-генетический уровень. Это наиболее элементарный характерный для жизни уровень. Как бы сложно или просто ни было строение любого живого организма, они все состоят из одинаковых молекулярных соединений. Примером этого являются нуклеиновые кислоты, белки, углеводы и другие сложные молекулярные комплексы органических и неорганических веществ. Их называют иногда биологическими макромолекулярными веществами. На молекулярном уровне происходят различные процессы жизнедеятельности живых организмов: обмен веществ, превращение энергии. С помощью молекулярного уровня осуществляется передача наследственной информации, образуются отдельные органоиды и происходят другие процессы.
2. Клеточный уровень. Клетка является структурной и функциональной единицей всех живых организмов на Земле. Отдельные органоиды в составе клетки имеют характерное строение и выполняют определенную функцию. Функции отдельных органоидов в клетке взаимосвязаны и выполняют единые процессы жизнедеятельности. У одноклеточных организмов (одноклеточные водоросли и простейшие) все жизненные процессы проходят в одной клетке, и одна клетка существует как отдельный организм. Вспомните одноклеточные водоросли, хламидомонады, хлореллу и простейших животных — амебу, инфузорию и др. У многоклеточных организмов одна клетка не может существовать как отдельный организм, но она является элементарной структурной единицей организма.

Тканевый уровень

Совокупность сходных по происхождению, строению и функциям клеток и межклеточных веществ образует ткань. Тканевый уровень характерен только для многоклеточных организмов. Также отдельные ткани не являются самостоятельным целостным организмом. Например, тела животных и человека состоят из четырех различных тканей (эпителиальная, соединительная, мышечная, нервная). Растительные ткани называются: образовательная, покровная, опорная, проводящая и выделительная. Вспомните строение и функции отдельных тканей.

Органный уровень

У многоклеточных организмов объединение нескольких одинаковых тканей, сходных по строению, происхождению и функциям, образует органный уровень. В составе каждого органа встречается несколько тканей, но среди них одна наиболее значительная. Отдельный орган не может существовать как целостный организм. Несколько органов, сходных по строению и функциям, объединяясь, составляют систему органов, например пищеварения, дыхания, кровообращения и т. д.

Организменный уровень

Растения (хламидомонада, хлорелла) и животные (амеба, инфузория и т. д.), тела которых состоят из одной клетки, представляют собой самостоятельный организм)А отдельная особь многоклеточных организмов считается как отдельный организм. В каждом отдельном организме происходят все жизненные процессы, характерные для всех живых организмов, — питание, дыхание, обмен веществ, раздражимость, размножение и т. д. Каждый самостоятельный организм оставляет после себя потомство. У многоклеточных организмов клетки, ткани, органы и системы органов не являются отдельным организмом. Только целостная система органов, специализированно выполняющих различные функции, образует отдельный самостоятельный организм. Развитие организма, начиная с оплодотворения и до конца жизни, занимает определенный промежуток времени. Такое индивидуальное развитие каждого организма называется онтогенезом. Организм может существовать в тесной взаимосвязи с окружающей средой.

Популяционно-видовой уровень

Совокупность особей одного вида пли группы, которая длительно существует в определенной части ареала относительно обособленно от других совокупностей того же вида, составляет популяцию. На популяционном уровне осуществляются простейшие эволюционные преобразования, что способствует постепенному появлению нового вида.

Биогеоценотический уровень

Совокупность организмов разных видов и различной сложности организации, приспособленных к одинаковым условиям природной среды, называется биогеоценозом, или природным сообществом. В состав биогеоценоза входят многочисленные виды живых организмов и условия природной среды. В природных биогеоценозах накапливается энергия и передается от одного организма к другому. Биогеоценоз включает неорганические, органические соединения и живые организмы.

Биосферный уровень

Совокупность всех живых организмов на нашей планете и общей природной среды их обитания составляет биосферный уровень. На биосферном уровне современная биология решает глобальные проблемы, например определение интенсивности образования свободного кислорода растительным покровом Земли или изменения концентрации углекислого газа в атмосфере, связанные с деятельностью человека. Главную роль в биосферном уровне выполняют "живые вещества", т. е. совокупность живых организмов, населяющих Землю. Также в биосферном уровне имеют значение "биокосные вещества", образовавшиеся в результате жизнедеятельности живых организмов и "косных" веществ (т. е. условий окружающей среды. На биосферном уровне происходит круговорот веществ и энергии на Земле с участием всех живых организмов биосферы.

Уровни организации жизни

Уровни организации органического мира - дискретные состояния биологических систем, характеризующиеся соподчиненностью, взаимосвязанностью, специфическими закономерностями.

Структурные уровни организации жизни чрезвычайно многообразны, но основными являются молекулярный, клеточный, онтогенетический, популяционно-видовой, бигиоценотический и биосферный.

1. Молекулярно-генетический уровень жизни. Важнейшими задачами биологии на этом этапе является изучение механизмов передачи генной информации, наследственности и изменчивости.

Существует несколько механизмов изменчивости на молекулярном уровне. Важнейшим из них является механизм мутации генов - непосредственное преобразование самих генов под воздействием внешних факторов. Факторами, вызывающими мутацию, являются: радиация, токсические химические соединения, вирусы.

Еще один механизм изменчивости - рекомбинация генов. Такой процесс имеет место при половом размножении у высших организмов. При этом не происходит изменения общего объема генетической информации.

Еще один механизм изменчивости был открыт лишь в 1950 -е гг. Это - неклассическая рекомбинация генов, при котором происходит общее увеличение объема генетической информации за счет включения в геном клетки новых генетических элементов. Чаще всего эти элементы привносятся в клетку вирусами.

2. Клеточный уровень. Сегодня наукой достоверно установлено, что наименьшей самостоятельной единицей строения, функционирования и развития живого организма является клетка, которая представляет собой элементарную биологическую систему, способную к самообновлению, самовоспроизведению и развитию. Цитология - наука, изучающая живую клетку, ее строение, функционирование как элементарной живой системы, исследует функции отдельных клеточных компонентов, процесс воспроизводства клеток, приспособление к условиям среды и др. Также цитология исследует особенности специализированных клеток, становление их особых функций и развитие специфических клеточных структур. Таким образом, современная цитология была названа физиологией клетки.

Значительным продвижением в изучении клеток произошло в начале 19 века, было открыто и описано клеточное ядро. На основании этих исследований и была создана клеточная теория, ставшая величайшим событием в биологии 19 в. Именно эта теория послужила фундаментом для развития эмбриологии, физиологии, теории эволюции.

Важнейшая часть всех клеток - ядро, которое хранит и воспроизводит генетическую информацию, регулирует процессы обмена веществ в клетке.

Все клетки делятся на две группы:

· Прокариоты - клетки, лишенные ядра

· Эукариоты - клетки содержащие ядра

Изучая живую клетку, ученые обратили внимание на существование двух основных типов ее питания, что позволило все организмы разделить на два типа:

· Автотрофные - сами производят необходимые им питательные вещества

· Гетеротрофные - не могут обходиться без органической пищи.

Позднее были уточнены такие важные факторы, как способность организмов синтезировать необходимые вещества (витамины, гормоны), обеспечивать себя энергией, зависимость от экологической среды и др. Таким образом, сложный и дифференцированный характер связей свидетельствует о необходимости системного подхода к изучению жизни и на онтогенетическом уровне.

3. Онтогенетический уровень. Многоклеточные организмы. Этот уровень возник в результате формирования живых организмов. Основной единицей жизни выступает отдельная особь, а элементарным явлением - онтогенез. Изучением функционирования и развития многоклеточных живых организмов занимается физиология. Эта наука рассматривает механизмы действия различных функций живого организма, их связь между собой, регуляцию и приспособление к внешней среде, происхождение и становление в процессе эволюции и индивидуального развития особи. По сути дела это и есть процесс онтогенеза - развитие организма от рождения до смерти. При этом происходит рост, перемещение отдельных структур, дифференциация и усложнение организма.

Все многоклеточные организмы состоят из органов и тканей. Ткани - это группа физически объединенных клеток и межклеточных веществ для выполнения определенных функций. Их изучение является предметом гистологии.

Органы - это относительно крупные функциональные единицы, которые объединяют различные ткани в те или иные физиологические комплексы. В свою очередь органы входят в состав более крупных единиц - систем организма. Среди них выделяют нервную, пищеварительную, сердечнососудистую, дыхательную и другие системы. Внутренние органы есть только у животных.

4. Популяционно-биоценотический уровень. Это надорганизменный уровень жизни, основной единицей которого является популяция. В отличии от популяции видом называется совокупность особей, сходных по строению и физиологическим свойствам, имеющих общее происхождение, могущих свободно скрещиваться и давать плодовитое потомство. Вид существует только через популяции, представляющие генетически открытые системы. Изучением популяций занимается популяционная биология.

Термин "популяция" был введен одним из основоположником генетики В. Иогансеном, который назвал так генетически неоднородную совокупность организмов. Позднее популяция стала считаться целостной системой, непрерывно взаимодействующей с окружающей средой. Именно популяции являются теми реальными системами, через которые существуют виды живых организмов.

Популяции - генетически открытые системы, так как изоляция популяций не абсолютна и периодически не бывает возможным обмен генетической информацией. Именно популяции выступают в качестве элементарных единиц эволюции, изменения их генофонда ведут к появлению новых видов.

Популяции, способны к самостоятельному существованию и трансформации, объединяются в совокупности следующего надорганизменного уровня - биоценозы. Биоценоз - совокупность популяций, проживающих на определенной территории.

Биоценоз представляет собой закрытую для чужих популяций систему, для составляющих его популяций - это открытая система.

5. Биогеоцетонический уровень. Биогеоценоз - устойчивая система, которая может существовать на протяжении длительного времени. Равновесие в живой системе динамично, т.е. представляет собой постоянное движение вокруг определенной точки устойчивости. Для ее стабильного функционирования необходимо наличие обратных связей между ее управляющей и исполняющей подсистемами. Такой способ поддержания динамического равновесия между различными элементами биогеоценоза, вызвано массовым размножением одних видов и сокращением или исчезновением других, приводящее к изменению качества окружающей среды, называют экологической катастрофой.

Биогеоценоз - это целостная саморегулирующаяся система, в которой выделяется несколько типов подсистем. Первичные системы - продуценты, непосредственно перерабатывающие неживую материю; консументы - вторичный уровень, на котором вещество и энергия получаются за счет использования продуцентов; затем идут консументы второго порядка. Также существуют падальщики и редуценты.

Через эти уровни в биогеоценозе проходит круговорот веществ: жизнь участвует в использовании, переработки и восстановлении различных структур. В биогеоценозе - однонаправленный энергетический поток. Это делает его незамкнутой системой, непрерывно связанной с соседними биогеоценозами.

Саморегуляция биогеоценлзов протекает тем успешнее, чем разнообразнее количество составляющих его элементов. От многообразия его компонентов зависит и устойчивость биогеоценозов. Выпадение одного или нескольких компонентов может привести к необратимому нарушению равновесия и гибели его как целостной системы.

6. Биосферный уровень. Это наивысший уровень организации жизни, охватывающий все явления жизни на нашей планете. Биосфера - это живое вещество планеты и преобразованная им окружающая среда. Биологический обмен веществ - это фактор, который объединяет все другие уровни организации жизни в одну биосферу. На этом уровне происходит круговорот веществ и превращение энергии, связанные с жизнедеятельностью всех живых организмов, обитающих на Земле. Таким образом, биосфера является единой экологической системой. Изучение функционирования этой системы, ее строения и функций - важнейшая задача биологии на этом уровне жизни. Занимаются изучением этих проблем экология, биоценология и биогеохимия.

Разработка учения о биосфере неразрывно связана с именем выдающегося российского ученого В.И. Вернадского. Именно ему удалось доказать связь органического мира нашей планеты, выступающего в виде единого нераздельного целого, с геологическими процессами на Земле. Вернадский открыл и изучил биогеохимические функции живого вещества.


Биосфера и человек, структура биосферы.

Биосфе́ра - оболочка Земли, заселённая живыми организмами, находящаяся под их воздействием и занятая продуктами их жизнедеятельности; «плёнка жизни»; глобальная экосистема Земли.

Границы биосферы:

· Верхняя граница в атмосфере: 15-20 км. Она определяется озоновым слоем, задерживающим коротковолновое ультрафиолетовое излучение, губительное для живых организмов.

· Нижняя граница в литосфере: 3,5-7,5 км. Она определяется температурой перехода воды в пар и температурой денатурации белков, однако в основном распространение живых организмов ограничивается вглубь несколькими метрами.

· Граница между атмосферой и литосферой в гидросфере: 10-11 км. Определяется дном Мирового Океана, включая донные отложения.

Человек тоже является частью биосферы, его деятельность превосходит многие природные процессы. Эта постоянная взаимосвязь получила название закона бумеранга, или закона обратной связи взаимодействия человек – биосфера.

Для того, чтобы скорректировать поведение человека в отношении природы, Б. Коммонером были сформулированы четыре закона, которые, с точки зрения Реймерса

1 – всё связано со всем

2 – все должно куда-то деваться

3 – природа знает лучше

4 – ничто не дается даром

Структура биосферы:

· Живое вещество - вся совокупность тел живых организмов, населяющих Землю, физико-химически едина, вне зависимости от их систематической принадлежности. Масса живого вещества сравнительно мала и оценивается величиной 2,4…3,6·1012 т (в сухом весе) и составляет менее одной миллионной части всей биосферы (ок. 3·1018 т), которая, в свою очередь, представляет собой менее одной тысячной массы Земли. Но это одна «из самых могущественных геохимических сил нашей планеты», поскольку живые организмы не просто населяют земную кору, а преобразуют облик Земли. Живые организмы населяют земную поверхность очень неравномерно. Их распространение зависит от географической широты.

· Биогенное вещество - вещество, создаваемое и перерабатываемое живым организмом. На протяжении органической эволюции живые организмы тысячекратно пропустили через свои органы, ткани, клетки, кровь большую часть атмосферы, весь объём мирового океана, огромную массу минеральных веществ. Эту геологическую роль живого вещества можно представить себе по месторождениям угля, нефти, карбонатных пород и т. д.

· Косное вещество - продукты, образующиеся без участия живых организмов.

· Биокосное вещество - вещество, которое создается одновременно живыми организмами и косными процессами, представляя динамически равновесные системы тех и других. Таковы почва, ил, кора выветривания и т. д. Организмы в них играют ведущую роль.


· Вещество, находящееся в радиоактивном распаде.

· Рассеянные атомы, непрерывно создающиеся из всякого рода земного вещества под влиянием космических излучений.

· Вещество космического происхождения.

Уровни организации жизни.

Уровни организации жизни- иерархически соподчинённые уровни организации биосистем, отражающие уровни их усложнения. Чаще всего выделяют семь основных структурных уровней жизни: молекулярный, клеточный,органно-тканевой, организменный, популяционно-видовой, биогеоценотический и биосферный. В типичном случае каждый из этих уровней является системой из подсистем нижележащего уровня и подсистемой системы более высокого уровня.

1) Молекулярный уровень организации жизни

Представлен разнообразными молекулами, находящимися в живой клетке (Объединение молекул в особые комплексы, кодирование и передача генетической информации)

2) Тканевый уровень организации жизни

Тканевый уровень представлен тканями, объединяющими клетки определённого строения, размеров, расположения и сходных функций. Ткани возникли в ходе исторического развития вместе с многоклеточностью.. У животных различают несколько типов тканей (эпителиальная, соединительная, мышечная, нервная). У растений различают меристематическую, защитную, основную и проводящую ткани. На этом уровне происходит специализация клеток.

3) Органный уровень организации жизни

Органный уровень представлен органами организмов. У простейших пищеварение, дыхание, циркуляция веществ, выделение, передвижение и размножение осуществляются за счёт различных органелл. У более совершенных организмов имеются системы органов. У растений и животных органы формируются за счёт разного количества тканей.

4) Организменный (онтогенетический) уровень организации жизни

Представлен одноклеточными и многоклеточными организмами растений, животных, грибов и бактерий.Клетка - основной структурный компонент организма.

5) Популяционно-видовой уровень организации жизни

Представлен в природе огромным разнообразием видов и их популяций.

6) Биогеоценотический уровень организации жизни

Представлен разнообразием естественных и культурных биогеоценозов во всех средах жизни.

7) Биосферный уровень организации жизни

Представлен высшей, глобальной формой организации биосистем - биосферой.

3. Распространенность и роль живого вещества на планете.

Живые организмы, регулируют круговорот веществ, служат мощным геологическим фактором, образующим поверхность Земли.

Уровни организации живой материи — иерархически соподчиненные уровне организации биосистем, отражающие уровни их осложнения. Чаще всего выделяют шесть основных структурных уровней жизни: молекулярный, клеточный, организменный, популяционно-видовой, биогеоценотический и биосферный. В типичном случае каждый из этих уровней является системой из подсистем низшего уровня и подсистемой системы более высокого уровня.

Следует подчеркнуть, что построение универсального списка уровней биосистем невозможна. Выделять отдельный уровень организации целесообразно в том случае, если на нем возникают новые свойства, отсутствующие у систем более низкого уровня. Например, феномен жизни возникает на клеточном уровне, а потенциальное бессмертие — на популяционном. При исследовании различных объектов или различных аспектов их функционирования могут выделяться различные наборы уровней организации. Например, у одноклеточных организмов клеточный и организменный уровень совпадают. При изучении пролиферации (размножения) клеток многоклеточного уровня может быть необходимым выделение отдельных тканевого и органного уровней, так как для ткани и для органа могут быть характерны специфические механизмы регуляции исследуемого процесса.

Одним из выводов, вытекающих из общей теории систем является то, что биосистемы разных уровней могут быть подобные в своих существенных свойствах, например, принципах регуляции важных для их существования параметров

Молекулярный уровень организации жизни

Это специфические для живых организмов классы органических соединений (белки, жиры, углеводы, нуклеиновые кислоты и т.д.), их взаимодействие между собой и с неорганическими компонентами, роль в обмене веществ и энергии в организме, хранении и передаче наследственной информации. Этот уровень можно назвать начальным, наиболее глубинным уровнем организации живого. Каждый живой организм состоит из молекул органических веществ-белков, нуклеиновых кислот, углеводов, жиров, находящихся в клетках. Связь между молекулярным и следующим за ним клеточным уровнем обеспечивается тем, что молекулы — это тот материал, из которого созданы надмолекулярные клеточные структуры. Только изучив молекулярный уровень можно понять, как протекали процессы зарождения и эволюции жизни на нашей планете, каковы молекулярные основы наследственности и процессов обмена веществ в организме. Ведь именно на молекулярном уровне происходит преобразование всех видов энергии и обмен веществ в клетке. Механизмы этих процессов также универсальные для всех живых организмов.

Компоненты

  • Молекулы неорганических и органических соединений
  • Молекулярные комплексы химических соединений (мембрана и т.д.)

Основные процессы

  • Объединение молекул в особые комплексы
  • Осуществление физико-химических реакций в упорядоченном виде
  • Копирование ДНК, кодирование и передача генетической информации

  • Биохимия
  • Биофизика
  • Молекулярная биология
  • Молекулярная генетика

Клеточный уровень организации жизни

Представленный свободноживущими одноклеточными организмами и клетками, входящих в многоклеточные организмы.

Компоненты

  • Комплексы молекул химических соединений и органеллы клетки.

Основные процессы

  • Биосинтез, фотосинтез
  • Регулирования химических реакций
  • Деление клетки
  • Привлечение химических элементов Земли и энергии Солнца в биосистеме

Науки, ведущих исследования на этом уровне

  • Генная инженерия
  • Цитогенетика
  • Цитология
  • Эмбриология Геология

Тканевый уровень организации жизни

Тканевый уровень представлен тканями, объединяющих клетки определенного строения, размеров, расположения и подобных функций. Ткани возникли в ходе исторического развития вместе с багатоклитиннистю. У многоклеточных организмов они образуются в процессе онтогенеза как следствие дифференциации клеток. У животных различают несколько типов тканей (эпителиальная, соединительная, мышечная, нервная, а также кровь и лимфа). У растений различают меристематическая, защитную, основную и ведущую ткани. На этом уровне происходит специализация клеток.

Научные дисциплины, которые осуществляют исследования на этом уровне: гистология.

Органный уровень организации жизни

Органный уровень представлен органами организмов. В простейших пищеварения, дыхания, циркуляция веществ, выделение, передвижение и размножение осуществляются за счет различных органелл. В более совершенных организмов являются системы органов. У растений и животных органы формируются за счет разного количества тканей. Для позвоночных характерна цефализация защищаемой в сосредоточении важнейших центров и органов чувств в голове.

Организменный уровень организации жизни

Представленный одноклеточными и многоклеточными организмами растений, животных, грибов и бактерий.

Компоненты

  • Клетка — основной структурный компонент организма. Из клеток образованы ткани и органы многоклеточных организмов

Основные процессы

  • Обмен веществ (метаболизм)
  • Раздражительность
  • Размножение
  • Онтогенез
  • Нервно-гуморальная регуляция процессов жизнедеятельности
  • Гомеостаз

Науки, ведущих исследования на этом уровне

  • Анатомия
  • Биометрия
  • Морфология
  • Физиология
  • Гистология

Популяционно-видовой уровень организации жизни

Представленный в природе огромным разнообразием видов и их популяций.

Компоненты

  • Группы родственных особей, объединенных определенным генофондом и специфическим взаимодействием с окружающей средой

Основные процессы

  1. Генетическая своеобразие
  2. Взаимодействие между лицами и популяциями
  3. Накопление элементарных эволюционных преобразований
  4. Осуществление микроэволюции и выработки адаптации к изменяющейся среде
  • Видообразования
  1. Увеличение биоразнообразия

Науки, ведущих исследования на этом уровне

  • Генетика популяций
  • Теория эволюции
  • Экология

Биогеоценотический уровень организации жизни

Представленный разнообразием природных и культурных экосистем во всех средах жизни.

Компоненты

  • Популяции различных видов
  • Факторы среды
  • Пищевые сети, потоки веществ и энергии

Основные процессы

  • Биохимический круговорот веществ и поток энергии, поддерживающих жизнь
  • Движимое равновесие между живыми оганизмамы и абиотической средой (гомеостаз)
  • Обеспечение живых организмов условиям проживания и ресурсами (пищей и убежищем)

Науки, ведущих исследования на этом уровне

  • Биогеография
  • Биогеоценология
  • Экология

Биосферный уровень организации жизни

Представленный выше глобальной формой организации биосистем — биосферой.

Компоненты

  • Биогеоценозы
  • Антропогенное воздействие

Основные процессы

  • Активное взаимодействие живого и неживого вещества планеты
  • Биологический круговорот веществ и энергии
  • Активная биогеохимическая участие человека во всех процессах биоферы, ее хозяйственная и этнокультурная деятельность

Науки, ведущих исследования на этом уровне

  • Экология
    • Глобальная экология
    • Космическая экология
    • Социальная экология

Для которой свойственна организация с четкой иерархией. Именно это свойство и отражают так называемые уровни организации жизни. В такой системе все части четко расположены, начиная от низшего порядка к высшему.

Уровни организации жизни - это иерархическая система с соподчиненными порядками, которая отображает не только характер биосистем, но и их постепенное усложнение в отношении друг к другу. На сегодняшний день принято выделять восемь основных уровней

Кроме того, выделяют следующие системы организации:

1. Микросистема - это некая доорганизменная ступень, которая включает в себя молекулярные и субклеточные уровни.

2. Мезосистема - это следующая, организменная ступень. Сюда относят клеточный, тканевой, органный, системный и организменные уровни организации жизни.

Существуют также и макросистемы, которые представляют собой надорганизменную совокупность уровней.

Стоит также отметить, что каждый уровень имеет собственные характеристики, которые и будут рассмотрены ниже.

Доорганизменные уровни организации жизни

Здесь принято выделять две основных ступени:

1. Молекулярный уровень организации жизни - представляет собой уровень работы и организации биологических макромолекул, включая белки, нуклеиновые кислоты, липиды и полисахариды. Именно здесь начинаются самые важные процессы жизнедеятельности любого организма - клеточное дыхание, превращение энергии, а также передача генетической информации.

2. Субклеточный уровень - сюда можно отнести организацию клеточных органелл, каждая из которых исполняет важную роль в существовании клетки.

Организменные уровни организации жизни

К этой группе можно отнести те системы, которые обеспечивают целостную работу всего организма. Принято выделять следующие:

1. Клеточный уровень организации жизни . Ни для кого не секрет, что именно клетка является структурной единицей любого Этот уровень изучается с помощью цитологических, цитохимических, цитогенетических и

2. Тканевый уровень . Здесь основное внимание стоит уделить строению, особенностям и функционированию разного рода тканей, из которых, собственно, и состоят органы. Исследованиями этих структур занимаются гистология и гистохимия.

3. Органный уровень . характеризируются новым уровнем организации. Здесь некоторые группы тканей объединяются, образовывая целостную структуру со специфическими функциями. Каждый орган является частью живого организма, но не может самостоятельно существовать вне его. Этот уровень изучают такие науки, как физиология, анатомия и в некой мере эмбриология.

Организменный уровень представляет собой как одноклеточные, так и многоклеточные организмы. Ведь каждый организм является целостной системой, внутри которой осуществляются все важные для жизнедеятельности процессы. Кроме того, во внимание берутся и процессы оплодотворения, развития и роста, а также старения отдельного организма. Изучением этого уровня занимаются такие науки, как физиология, эмбриология, генетика, анатомия, палеонтология.

Надорганизменные уровни организации жизни

Здесь во внимание берутся уже не организмы и их структурные части, а определенная совокупность живых существ.

1. Популяционно-видовой уровень . Основной единицей здесь является популяция - совокупность организмов определенного вида, которая заселяет четко ограниченную территорию. Все особи способны к свободному скрещиванию друг с другом. В исследовании этого уровня участвую такие науки, как систематика, экология, генетика популяций, биогеография, таксономия.

2. Экосистемный уровень - здесь во внимание берется устойчивое сообщество разных популяций, существование которых тесно связано между собой и зависит от климатических условий и т. д. В основном изучением такого уровня организации занимается экология

3. Биосферный уровень - это высшая форма организации жизни, которая представляет собой глобальный комплекс биогеоценозов всей планеты.

УРОВНИ ОРГАНИЗАЦИИ ЖИВОГО

Различают молекулярный, клеточный, тканевой, органный, организменный, популяционный, видовой, биоценотический и глобаль- ный (биосферный) уровни организации живого. На всех этих уровнях проявляются все свойства, характерные для живого. Каждый из этих уровней характеризуется особенностями, присущими другим уровням, но каждому уровню присущи собственные специфические особенности.

Молекулярный уровень. Этот уровень является глубинным в организации живого и представлен молекулами нуклеиновых кислот, белков, углеводов, липидов и стероидов, находящихся в клетках и получивших название биологических молекул. На этом уровне зачинаются и осуществляются важнейшие процессы жизнедеятельно- сти (кодирование и передача наследственной информации, дыхание, обмен веществ и энергии, изменчивость и др.). Физико-химическая специфика этого уровня заключается в том, что в состав живого входит большое количество химических элементов, но основная масса живого представлена углеродом, кислородом, водородом и азотом. Из группы атомов образуются молекулы, а из последних формируются сложные химические соединения, различающиеся по строению и функциям. Большинство этих соединений в клетках представлены нуклеиновыми кислотами и белками, макромолекулы которых являются полимерами, синтезированными в результате образования мономеров и соединения последних в определенном порядке. Кроме того, мономеры макромолекул в пределах одного и того же соединения имеют одинаковые химические группировки и соединены с помощью химических связей между атомами, их неспецифи-

ческих частей (участков). Все макромолекулы универсальны, так как построены по одному плану независимо от их видовой принадлежности. Являясь универсальными, они одновременно и уникальны, ибо их структура неповторима. Например, в состав нуклеотидов ДНК входит по одному азотистому основанию из четырех известных (аденин, гуанин, цитозин или тимин), вследствие чего любой нуклеотид неповторим по своему составу. Неповторима также и вторичная структура молекул ДНК.

Биологическая специфика молекулярного уровня определяется функциональной специфичностью биологических молекул. Например, специфичность нуклеиновых кислот заключается в том, что в них закодирована генетическая информация о синтезе белков. Более того, эти процессы осуществляются в результате одних и тех же этапов метаболизма. Например, биосинтезы нуклеиновых кислот, аминокислот и белков протекают по сходной схеме у всех организмов. Универсальными являются также окисление жирных кислот, гликолиз и другие реакции.

Специфичность белков определяется специфической последовательностью аминокислот в их молекулах. Эта последовательность определяет далее специфические биологические свойства белков, так как они являются основными структурными элементами клеток, катализаторами и регуляторами реакций в клетках. Углеводы и липиды служат важнейшими источниками энергии, тогда как стероиды имеют значение для регуляции ряда метаболических процессов.

На молекулярном уровне осуществляется превращение энергии - лучистой энергии в химическую, запасаемую в углеводах и других химических соединениях, а химической энергии углеводов и других молекул - в биологически доступную энергию, запасаемую в форме макроэргических связей АТФ. Наконец, здесь происходит превращение энергии макроэргических фосфатных связей в работу - механическую, электрическую, химическую, осмотическую. Механизмы всех метаболических и энергетических процессов универсальны.

Биологические молекулы обеспечивают также преемственность между молекулами и следующим за ним уровнем (клеточным), так как являются материалом, из которого образуются надмолекулярные структуры. Молекулярный уровень является «ареной» химических реакций, которые обеспечивают энергией клеточный уровень.

Клеточный уровень. Этот уровень организации живого представлен клетками, действующими в качестве самостоятельных организ-

мов (бактерии, простейшие и др.), а также клетками многоклеточных организмов. Главнейшая специфическая черта этого уровня заключается в том, что с него начинается жизнь. Будучи способными к жизни, росту и размножению, клетки являются основной формой организации живой материи, элементарными единицами, из которых построены все живые существа (прокариоты и эукариоты). Между клетками растений и животных нет принципиальных различий по структуре и функциям. Некоторые различия касаются лишь строения их мембран и отдельных органелл. Заметные различия в строении есть между клетками-прокариотами и клеткамиэукариотами, но в функциональном плане эти различия нивелируются, ибо везде действует правило «клетка от клетки».

Специфичность клеточного уровня определяется специализацией клеток, существованием клеток в качестве специализированных еди- ниц многоклеточного организма. На клеточном уровне происходит разграничение и упорядочение процессов жизнедеятельности в пространстве и во времени, что связано с приуроченностью функций к разным субклеточным структурам. Например, у клеток-эукариотов значительно развиты мембранные системы (плазматическая мембра- на, цитоплазматическая сеть, пластинчатый комплекс) и клеточные органеллы (ядро, хромосомы, центриоли, митохондрии, пластиды, лизосомы, рибосомы). Мембранные структуры являются «ареной» важнейших жизненных процессов, причем двухслойное строение мембранной системы значительно увеличивает площадь «арены». Кроме того, мембранные структуры обеспечивают пространственное разделение в клетках многих биологических молекул, а их физическое состояние позволяет осуществлять постоянное диффузное движение некоторых из содержащихся в них молекул белков и фосфолипидов. Таким образом, мембраны являются системой, компоненты которой находятся в движении. Для них характерны различные перестройки, что определяет раздражимость клеток - важнейшее свойство живого.

Тканевой уровень. Данный уровень представлен тканями, объединяющими клетки определенного строения, размеров, расположения и сходных функций. Ткани возникли в ходе исторического развития вместе с многоклеточностью. У многоклеточных организмов они образуются в процессе онтогенеза как следствие дифференциации клеток. У животных различают несколько типов тканей (эпителиальная, соединительная, мышечная, кровь, нервная и репродуктивная). У рас-

тений различают меристематическую, защитную, основную и проводящую ткани. На этом уровне происходит специализация клеток.

Органный уровень. Представлен органами организмов. У растений и животных органы формируются за счет разного количества тканей. У простейших пищеварение, дыхание, циркуляция веществ, выделение, передвижение и размножение осуществляются за счет различных органелл. У более совершенных организмов имеются системы органов. Для позвоночных характерна цефализация, заклю- чающаяся в сосредоточении важнейших нервных центров и органов чувств в голове.

Организменный уровень. Данный уровень представлен самими организмами - одноклеточными и многоклеточными организмами растительной и животной природы. Специфическая особенность организменного уровня заключается в том, что на этом уровне происходят декодирование и реализация генетической информации, создание структурных и функциональных особенностей, присущих организмам данного вида.

Видовой уровень. Данный уровень определяется видами растений и животных. В настоящее время насчитывают около 500 тыс. видов растений и около 1,5 млн видов животных, представители которых характеризуются самым различным местообитанием и занимают разные экологические ниши. Вид является также единицей классификации живых существ.

Популяционный уровень. Растения и животные не существуют изолированно; они объединены в популяции, которые характеризуются определенным генофондом. В пределах одного и того же вида может насчитываться от одной до многих тысяч популяций. В популяциях осуществляются элементарные эволюционные преобразования, происходит выработка новой адаптивной формы.

Биоценотический уровень. Представлен биоценозами - сообществами организмов разной видовой принадлежности. В таких сообществах организмы разных видов в той или иной мере зависят один от другого. В ходе исторического развития сложились биогеоценозы (экосистемы), которые представляют собой системы, состоящие из взаимозависящих сообществ организмов и абиотических факторов среды. Экосистемам присуще подвижное равновесие между организмами и абиотическими факторами. На том уровне осуществляются вещественно-энергетические круговороты, связанные с жизнедеятельностью организмов.

Глобальный (биосферный) уровень. Данный уровень является высшей формой организации живого (живых систем). Он представлен биосферой. На этом уровне осуществляется объединение всех вещественно-энергетических круговоротов в единый гигантский биосферный круговорот веществ и энергии.

Между разными уровнями организации живого существует диалектическое единство. Живое организовано по типу системной организации, основу которой составляет иерархичность систем. Переход от одного уровня к другому связан с сохранением функциональных механизмов, действующих на предшествующих уровнях, и сопровождается появлением структуры и функций новых типов, а также взаимодействия, характеризующегося новыми особенностями, т. е. появляется новое качество.