Взаимно обратные функции. Обратные функции – определение и свойства

Допустим, что у нас есть некая функция y = f (x) , которая является строго монотонной (убывающей или возрастающей) и непрерывной на области определения x ∈ a ; b ; область ее значений y ∈ c ; d , а на интервале c ; d при этом у нас будет определена функция x = g (y) с областью значений a ; b . Вторая функция также будет непрерывной и строго монотонной. По отношению к y = f (x) она будет обратной функцией. То есть мы можем говорить об обратной функции x = g (y) тогда, когда y = f (x) на заданном интервале будет либо убывать, либо возрастать.

Две этих функции, f и g , будут взаимно обратными.

Yandex.RTB R-A-339285-1

Для чего вообще нам нужно понятие обратных функций?

Это нужно нам для решения уравнений y = f (x) , которые записываются как раз с помощью этих выражений.

Допустим, нам нужно найти решение уравнения cos (x) = 1 3 . Его решениями будут две точки: x = ± a r c o c s 1 3 + 2 π · k , k ∈ Z

Обратными по отношению друг к другу будут, например, функции арккосинуса и косинуса.

Разберем несколько задач на нахождение функций, обратных заданным.

Пример 1

Условие: какая функция будет обратной для y = 3 x + 2 ?

Решение

Область определений и область значений функции, заданной в условии, – это множество всех действительных чисел. Попробуем решить данное уравнение через x , то есть выразив x через y .

Мы получим x = 1 3 y - 2 3 . Это и есть нужная нам обратная функция, но y здесь будет аргументом, а x - функцией. Переставим их, чтобы получить более привычную форму записи:

Ответ: функция y = 1 3 x - 2 3 будет обратной для y = 3 x + 2 .

Обе взаимно обратные функции можно отобразить на графике следующим образом:

Мы видим симметричность обоих графиков относительно y = x . Эта прямая является биссектрисой первого и третьего квадрантов. Получилось доказательство одного из свойств взаимно обратных функций, о котором мы поговорим далее.

Возьмем пример, в котором нужно найти логарифмическую функцию, обратную заданной показательной.

Пример 2

Условие: определите, какая функция будет обратной для y = 2 x .

Решение

Для заданной функции областью определения являются все действительные числа. Область значений лежит в интервале 0 ; + ∞ . Теперь нам нужно выразить x через y , то есть решить указанное уравнение через x . Мы получаем x = log 2 y . Переставим переменные и получим y = log 2 x .

В итоге у нас вышли показательная и логарифмическая функции, которые будут взаимно обратными друг другу на всей области определения.

Ответ: y = log 2 x .

На графике обе функции будут выглядеть так:

Основные свойства взаимно обратных функций

В этом пункте мы перечислим основные свойства функций y = f (x) и x = g (y) , являющихся взаимно обратными.

Определение 1

  1. Первое свойство мы уже вывели ранее: y = f (g (y)) и x = g (f (x)) .
  2. Второе свойство вытекает из первого: область определения y = f (x) будет совпадать с областью значений обратной функции x = g (y) , и наоборот.
  3. Графики функций, являющихся обратными, будут симметричными относительно y = x .
  4. Если y = f (x) является возрастающей, то и x = g (y) будет возрастать, а если y = f (x) убывает, то убывает и x = g (y) .

Советуем внимательно отнестись к понятиям области определения и области значения функций и никогда их не путать. Допустим, что у нас есть две взаимно обратные функции y = f (x) = a x и x = g (y) = log a y . Согласно первому свойству, y = f (g (y)) = a log a y . Данное равенство будет верным только в случае положительных значений y , а для отрицательных логарифм не определен, поэтому не спешите записывать, что a log a y = y . Обязательно проверьте и добавьте, что это верно только при положительном y .

А вот равенство x = f (g (x)) = log a a x = x будет верным при любых действительных значениях x .

Не забывайте про этот момент, особенно если приходится работать с тригонометрическими и обратными тригонометрическими функциями. Так, a r c sin sin 7 π 3 ≠ 7 π 3 , потому что область значений арксинуса - π 2 ; π 2 и 7 π 3 в нее не входит. Верной будет запись

a r c sin sin 7 π 3 = a r c sin sin 2 π + π 3 = = п о ф о р м у л е п р и в и д е н и я = a r c sin sin π 3 = π 3

А вот sin a r c sin 1 3 = 1 3 – верное равенство, т.е. sin (a r c sin x) = x при x ∈ - 1 ; 1 и a r c sin (sin x) = x при x ∈ - π 2 ; π 2 . Всегда будьте внимательны с областью значений и областью определений обратных функций!

  • Основные взаимно обратные функции: степенные

Если у нас есть степенная функция y = x a , то при x > 0 степенная функция x = y 1 a также будет обратной ей. Заменим буквы и получим соответственно y = x a и x = y 1 a .

На графике они будут выглядеть следующим образом (случаи с положительным и отрицательным коэффициентом a):

  • Основные взаимно обратные функции: показательные и логарифмические

Возьмем a,которое будет положительным числом, не равным 1 .

Графики для функций с a > 1 и a < 1 будут выглядеть так:

  • Основные взаимно обратные функции: тригонометрические и обратные тригонометрические

Если нам нужно построить график главной ветви синуса и арксинуса, он будет выглядеть следующим образом (показан выделенной светлой областью).

Определение обратной функции и ее свойства: лемма о взаимной монотонности прямой и обратной функций; симметрия графиков прямой и обратной функций; теоремы о существовании и непрерывности обратной функции для функции, строго монотонной на отрезке, интервале и полуинтервале. Примеры обратных функций. Пример решения задачи. Доказательства свойств и теорем.

Определение и свойства

Определение обратной функции
Пусть функция имеет область определения X и множество значений Y . И пусть она обладает свойством:
для всех .
Тогда для любого элемента из множества Y можно поставить в соответствие только один элемент множества X , для которого . Такое соответствие определяет функцию, которая называется обратной функцией к . Обратная функция обозначается так:
.

Из определения следует, что
;
для всех ;
для всех .

Свойство о симметрии графиков прямой и обратной функций
Графики прямой и обратной функций симметричны относительно прямой .

Теорема о существовании и непрерывности обратной функции на отрезке
Пусть функция непрерывна и строго возрастает (убывает) на отрезке . Тогда на отрезке определена и непрерывна обратная функция , которая строго возрастает (убывает).

Для возрастающей функции . Для убывающей - .

Теорема о существовании и непрерывности обратной функции на интервале
Пусть функция непрерывна и строго возрастает (убывает) на открытом конечном или бесконечном интервале . Тогда на интервале определена и непрерывна обратная функция , которая строго возрастает (убывает).

Для возрастающей функции .
Для убывающей: .

Аналогичным образом можно сформулировать теорему о существовании и непрерывности обратной функции на полуинтервале.

Если функция непрерывна и строго возрастает (убывает) на полуинтервале или , то на полуинтервале или определена обратная функция , которая строго возрастает (убывает). Здесь .

Если строго возрастает, то интервалам и соответствуют интервалы и . Если строго убывает, то интервалам и соответствуют интервалы и .
Эта теорема доказывается тем же способом, что и теорема о существовании и непрерывности обратной функции на интервале.

Примеры обратных функций

Арксинус

Графики y = sin x и обратной функции y = arcsin x .

Рассмотрим тригонометрическую функцию синус : . Она определена и непрерывна для всех значений аргумента , но не является монотонной. Однако, если сузить область определения, то можно выделить монотонные участки. Так, на отрезке , функция определена, непрерывна, строго возрастает и принимает значения от -1 до +1 . Поэтому имеет на нем обратную функцию, которую называют арксинусом. Арксинус имеет область определения и множество значений .

Логарифм

Графики y = 2 x и обратной функции y = log 2 x .

Показательная функция определена, непрерывна и строго возрастает при всех значений аргумента . Множеством ее значений является открытый интервал . Обратной функцией является логарифм по основанию два. Он имеет область определения и множество значений .

Квадратный корень

Графики y = x 2 и обратной функции .

Степенная функция определена и непрерывна для всех . Множеством ее значений является полуинтервал . Но она не является монотонной при всех значений аргумента. Однако, на полуинтервале она непрерывна и строго монотонно возрастает. Поэтому если, в качестве области определения, взять множество , то существует обратная функция, которая называется квадратным корнем. Обратная функция имеет область определения и множество значений .

Пример. Доказательство существования и единственности корня степени n

Докажите, что уравнение , где n - натуральное, - действительное неотрицательное число, имеет единственное решение на множестве действительных чисел, . Это решение называется корнем степени n из числа a . То есть нужно показать, что любое неотрицательное число имеет единственный корень степени n .

Рассмотрим функцию от переменной x :
(П1) .

Докажем, что она непрерывна.
Используя определение непрерывности , покажем, что
.
Применяем формулу бинома Ньютона:
(П2)
.
Применим арифметические свойства пределов функции . Поскольку , то отлично от нуля только первое слагаемое:
.
Непрерывность доказана.

Докажем, что функция (П1) строго возрастает при .
Возьмем произвольные числа , связанные неравенствами:
, , .
Нам нужно показать, что . Введем переменные . Тогда . Поскольку , то из (П2) видно, что . Или
.
Строгое возрастание доказано.

Найдем множество значений функции при .
В точке , .
Найдем предел .
Для этого применим неравенство Бернулли . При имеем:
.
Поскольку , то и .
Применяя свойство неравенств бесконечно больших функций находим, что .
Таким образом, , .

Согласно теореме об обратной функции, на интервале определена и непрерывна обратная функция . То есть для любого существует единственное , удовлетворяющее уравнению . Поскольку у нас , то это означает, что для любого , уравнение имеет единственное решение, которое называют корнем степени n из числа x :
.

Доказательства свойств и теорем

Доказательство леммы о взаимной монотонности прямой и обратной функций

Пусть функция имеет область определения X и множество значений Y . Докажем, что она имеет обратную функцию. Исходя из , нам нужно доказать, что
для всех .

Допустим противное. Пусть существуют числа , так что . Пусть при этом . Иначе, поменяем обозначения, чтобы было . Тогда, в силу строгой монотонности f , должно выполняться одно из неравенств:
если f строго возрастает;
если f строго убывает.
То есть . Возникло противоречие. Следовательно, имеет обратную функцию .

Пусть функция строго возрастает. Докажем, что и обратная функция также строго возрастает. Введем обозначения:
. То есть нам нужно доказать, что если , то .

Допустим противное. Пусть , но .

Если , то . Этот случай отпадает.

Пусть . Тогда, в силу строгого возрастания функции , , или . Возникло противоречие. Поэтому возможен только случай .

Для строго возрастающей функции лемма доказана. Аналогичным образом можно доказать эту лемму и для строго убывающей функции.

Доказательство свойства о симметрии графиков прямой и обратной функций

Пусть - произвольная точка графика прямой функции :
(2.1) .
Покажем, что точка , симметричная точке A относительно прямой , принадлежит графику обратной функции :
.
Из определения обратной функции следует, что
(2.2) .
Таким образом, нам нужно показать (2.2).

График обратной функции y = f -1 (x) симметричен графику прямой функции y = f(x) относительно прямой y = x .

Из точек A и S опустим перпендикуляры на оси координат. Тогда
, .

Через точку A проводим прямую, перпендикулярную прямой . Пусть прямые пересекаются в точке C . На прямой строим точку S так, чтобы . Тогда точка S будет симметрична точке A относительно прямой .

Рассмотрим треугольники и . Они имеют две равные по длине стороны: и , и равные углы между ними: . Поэтому они конгруэнтны. Тогда
.

Рассмотрим треугольник . Поскольку , то
.
Тоже самое относится к треугольнику :
.
Тогда
.

Теперь находим и :
;
.

Итак, уравнение (2.2):
(2.2)
выполняется, поскольку , и выполняется (2.1):
(2.1) .

Так как мы выбрали точку A произвольно, то это относится ко всем точкам графика :
все точки графика функции , симметрично отраженные относительно прямой , принадлежат графику обратной функции .
Далее мы можем поменять и местами. В результате получим, что
все точки графика функции , симметрично отраженные относительно прямой , принадлежат графику функции .
Отсюда следует, что графики функций и симметричны относительно прямой .

Свойство доказано.

Доказательство теоремы о существовании и непрерывности обратной функции на отрезке

Пусть обозначает область определения функции - отрезок .

1. Покажем, что множеством значений функции является отрезок :
,
где .

Действительно, поскольку функция непрерывна на отрезке , то по теореме Вейерштрасса она достигает на нем минимума и максимума . Тогда по теореме Больцано - Коши функция принимает все значения из отрезка . То есть для любого существует , для которого . Поскольку и есть минимум и максимум, то функция принимает на отрезке только значения из множества .

2. Поскольку функция строго монотонна, то согласно вышеприведенной , существует обратная функция , которая также строго монотонна (возрастает, если возрастает ; и убывает, если убывает ). Областью определения обратной функции является множество , а множеством значений - множество .

3. Теперь докажем, что обратная функция непрерывна.

3.1. Пусть есть произвольная внутренняя точка отрезка : . Докажем, что обратная функция непрерывна в этой точке.

Пусть ей соответствует точка . Поскольку обратная функция строго монотонна, то есть внутренняя точка отрезка :
.
Согласно определению непрерывности нам нужно доказать, что для любого имеется такая функция , при которой
(3.1) для всех .

Заметим, что мы можем взять сколь угодно малым. Действительно, если мы нашли такую функцию , при которой неравенства (3.1) выполняются при достаточно малых значениях , то они будут автоматически выполняться и при любых больших значениях , если положить при .

Возьмем настолько малым, чтобы точки и принадлежали отрезку :
.
Введем и упорядочим обозначения:



.

Преобразуем первое неравенство (3.1):
(3.1) для всех .
;
;
;
(3.2) .
Поскольку строго монотонна, то отсюда следует, что
(3.3.1) , если возрастает;
(3.3.2) , если убывает.
Поскольку обратная функция также строго монотонна, то из неравенств (3.3) следуют неравенства (3.2).

Для любого ε > 0 существует δ , так что |f -1 (y) - f -1 (y 0) | < ε для всех |y - y 0 | < δ .

Неравенства (3.3) определяют открытый интервал, концы которого удалены от точки на расстояния и . Пусть есть наименьшее из этих расстояний:
.
В силу строгой монотонности , , . Поэтому и . Тогда интервал будет лежать в интервале, определяемом неравенствами (3.3). И для всех значений , принадлежащих ему будут выполняться неравенства (3.2).

Итак, мы нашли, что для достаточно малого , существует , так что
при .
Теперь изменим обозначения.
Для достаточно малого , существует такое , так что
при .
Это означает, что обратная функция непрерывна во внутренних точках .

3.2. Теперь рассмотрим концы области определения. Здесь все рассуждения остаются теми же самыми. Только нужно рассматривать односторонние окрестности этих точек. Вместо точки будет или , а вместо точки - или .

Так, для возрастающей функции , .
при .
Обратная функция непрерывна в точке , поскольку для любого достаточно малого имеется , так что
при .

Для убывающей функции , .
Обратная функция непрерывна в точке , поскольку для любого достаточно малого имеется , так что
при .
Обратная функция непрерывна в точке , поскольку для любого достаточно малого имеется , так что
при .

Теорема доказана.

Доказательство теоремы о существовании и непрерывности обратной функции на интервале

Пусть обозначает область определения функции - открытый интервал . Пусть - множество ее значений. Согласно приведенной выше , существует обратная функция , которая имеет область определения , множество значений и является строго монотонной (возрастает если возрастает и убывает если убывает ). Нам осталось доказать, что
1) множеством является открытый интервал , и что
2) обратная функция непрерывна на нем.
Здесь .

1. Покажем, что множеством значений функции является открытый интервал :
.

Как и всякое непустое множество, элементы которого имеют операцию сравнения, множество значений функции имеет нижнюю и верхнюю грани:
.
Здесь и могут быть конечными числами или символами и .

1.1. Покажем, что точки и не принадлежат множеству значений функции. То есть множество значений не может быть отрезком .

Если или является бесконечно удаленной точкой : или , то такая точка не является элементом множества. Поэтому она не может принадлежать множеству значений.

Пусть (или ) является конечным числом. Допустим противное. Пусть точка (или ) принадлежит множеству значений функции . То есть существует такое , для которого (или ). Возьмем точки и , удовлетворяющие неравенствам:
.
Поскольку функция строго монотонна, то
, если f возрастает;
, если f убывает.
То есть мы нашли точку, значение функции в которой меньше (больше ). Но это противоречит определению нижней (верхней) грани, согласно которому
для всех .
Поэтому точки и не могут принадлежать множеству значений функции .

1.2. Теперь покажем, что множество значений является интервалом , а не объединением интервалов и точек. То есть для любой точки существует , для которого .

Согласно определениям нижней и верхней граней, в любой окрестности точек и содержится хотя бы один элемент множества . Пусть - произвольное число, принадлежащее интервалу : . Тогда для окрестности существует , для которого
.
Для окрестности существует , для которого
.

Поскольку и , то . Тогда
(4.1.1) если возрастает;
(4.1.2) если убывает.
Неравенства (4.1) легко доказать от противного. Но можно воспользоваться , согласно которой на множестве существует обратная функция , которая строго возрастает, если возрастает и строго убывает, если убывает . Тогда сразу получаем неравенства (4.1).

Итак, мы имеем отрезок , где если возрастает;
если убывает.
На концах отрезка функция принимает значения и . Поскольку , то по теореме Больцано - Коши , существует точка , для которой .

Поскольку , то тем самым мы показали, что для любого существует , для которого . Это означает, что множеством значений функции является открытый интервал .

2. Теперь покажем, что обратная функция непрерывна в произвольной точке интервала : . Для этого применим к отрезку . Поскольку , то обратная функция непрерывна на отрезке , в том числе и в точке .

Теорема доказана.

Использованная литература:
О.И. Бесов. Лекции по математическому анализу. Часть 1. Москва, 2004.
С.М. Никольский. Курс математического анализа. Том 1. Москва, 1983.

Соответственные выражения, которые обращаются друг в друга. Чтобы разобраться в том, что это означает, стоит рассмотреть конкретный пример. Допустим, имеем y = cos(x). Если взять от аргумента косинус, то можно найти значение y. Очевидно, для этого необходимо иметь икс. Но что если изначально дан игрек? Именно тут дело доходит до сути вопроса. Для решения задачи требуется использование обратной функции. В нашем случае это арккосинус.

После всех преобразований получим: x = arccos(y).

То есть, чтобы найти функцию, обратную данной, достаточно просто выразить из нее аргумент. Но это работает только при условии, если полученный результат будет иметь единственное значение (об этом дальше).

В общем виде можно записать этот факт так: f(x) = y, g(y) = x.

Определение

Пусть f - функция, областью определения которой является множество X, а областью значений - множество Y. Тогда, если существует g, чьи области выполняют противоположные задачи, то f является обратимой.

Кроме того, в таком случае g - единственна, что означает, что существует ровно одна функция, удовлетворяющая этому свойству (не более, не менее). Тогда ее называют обратной функцией, и на письме обозначают так: g(x) = f -1 (x).

Другими словами, их можно рассматривать как двоичное отношение. Обратимость имеет место быть только тогда, когда одному элементу множества соответствует одно значение из другого.

Не всегда существует обратная функция. Для этого каждый элемент y є Y должен соответствовать не более чем одному x є X. Тогда f называется взаимно-однозначной или инъекцией. Если f -1 принадлежит Y, то каждый элемент этого множества должен соответствовать некоторому x ∈ X. Функции с таким свойством называются сюръекциями. Оно выполняется по определению, если Y - изображение f, но это не всегда так. Чтобы быть обратной, функция должна быть как инъекцией, так и сюръекцией. Такие выражения называются биекциями.

Пример: квадратные и корневые функции

Функция определена на }