Численное интегрирование. Метод прямоугольников и метод трапеций

Как вычислить определенный интеграл методом трапеций?

Сначала формула в общем виде. Возможно, она будет не всем и не сразу понятна… да Карлссон с вами – практические примеры всё прояснят! Спокойствие. Только спокойствие.

Рассмотрим определенный интеграл , где – функция, непрерывная на отрезке . Проведём разбиение отрезка на равных отрезков:
. При этом, очевидно: (нижний предел интегрирования) и (верхний предел интегрирования). Точки также называют узлами .

Тогда определенный интеграл можно вычислить приближенно по формуле трапеций :
, где:
– длина каждого из маленьких отрезков или шаг ;
– значения подынтегральной функции в точках .

Пример 1

Вычислить приближенно определенный интеграл по формуле трапеций. Результаты округлить до трёх знаков после запятой.

а) Разбив отрезок интегрирования на 3 части.
б) Разбив отрезок интегрирования на 5 частей.

Решение:
а) Специально для чайников я привязал первый пункт к чертежу, который наглядно демонстрировал принцип метода. Если будет трудно, посматривайте на чертёж по ходу комментариев, вот его кусок:

По условию отрезок интегрирования нужно разделить на 3 части, то есть .
Вычислим длину каждого отрезка разбиения: . Параметр , напоминаю, также называется шагом .

Сколько будет точек (узлов разбиения)? Их будет на одну больше , чем количество отрезков:

Таким образом, общая формула трапеций сокращается до приятных размеров:

Для расчетов можно использовать обычный микрокалькулятор:

Обратите внимание, что, в соответствии с условием задачи, все вычисления следует округлять до 3-его знака после запятой .

Окончательно:

Напоминаю, что полученное значение – это приближенное значение площади (см. рисунок выше).

б) Разобьём отрезок интегрирования на 5 равных частей, то есть . Зачем это нужно? Чтобы Фобос-Грунт не падал в океан – увеличивая количество отрезков, мы увеличиваем точность вычислений.

Если , то формула трапеций принимает следующий вид:

Найдем шаг разбиения:
, то есть, длина каждого промежуточного отрезка равна 0,6.

При чистовом оформлении задачи все вычисления удобно оформлять расчетной таблицей:

В первой строке записываем «счётчик»

Как формируется вторая строка, думаю, всем видно – сначала записываем нижний предел интегрирования , остальные значения получаем, последовательно приплюсовывая шаг .

По какому принципу заполняется нижняя строка, тоже, думаю, практически все поняли. Например, если , то . Что называется, считай, не ленись.

В результате:

Ну что же, уточнение, и серьёзное, действительно есть!
Если для 3-х отрезков разбиения , то для 5-ти отрезков . Таким образом, с большой долей уверенности можно утверждать, что, по крайне мере .

Пример 2

Вычислить приближенно определенный интеграл по формуле трапеций с точностью до двух знаков после запятой (до 0,01).

Решение: Почти та же задача, но немного в другой формулировке. Принципиальное отличие от Примера 1 состоит в том, что мы не знаем , НА СКОЛЬКО отрезков разбивать отрезок интегрирования, чтобы получить два верных знака после запятой. Иными словами, мы не знаем значение .

Существует специальная формула, позволяющая определить количество отрезков разбиения, чтобы гарантированно достигнуть требуемой точности, но практике она часто трудноприменима. Поэтому выгодно использовать упрощенный подход.

Сначала отрезок интегрирования разбивается на несколько больших отрезков, как правило, на 2-3-4-5. Разобьем отрезок интегрирования, например, на те же 5 частей. Формула уже знакома:

И шаг, естественно, тоже известен:

Но возникает еще один вопрос, до какого разряда округлять результаты ? В условии же ничего не сказано о том, сколько оставлять знаков после запятой. Общая рекомендация такова: к требуемой точности нужно прибавить 2-3 разряда . В данном случае необходимая точность 0,01. Согласно рекомендации, после запятой для верности оставим пять знаков (можно было и четыре):

В результате:

После первичного результата количество отрезков удваивают . В данном случае необходимо провести разбиение на 10 отрезков. И когда количество отрезков растёт, то в голову приходит светлая мысль, что тыкать пальцами в микрокалькулятор уже как-то надоело. Поэтому еще раз предлагаю закачать и использовать мой калькулятор-полуавтомат (ссылка в начале урока).

Для формула трапеций приобретает следующий вид:

В бумажной версии запись можно спокойно перенести на следующую строчку.

Вычислим шаг разбиения:

Результаты расчётов сведём в таблицу:


При чистовом оформлении в тетрадь длинную таблицу выгодно превратить в двухэтажную.


Метод трапеций является одним из методов численного интегрирования. Он позволяет вычислять определенные интегралы с заранее заданной степенью точности.

Сначала опишем суть метода трапеций и выведем формулу трапеций. Далее запишем оценку абсолютной погрешности метода и подробно разберем решение характерных примеров. В заключении сравним метод трапеций с методом прямоугольников.

Навигация по странице.

Суть метода трапеций.

Поставим перед собой следующую задачу: пусть нам требуется приближенно вычислить определенный интеграл , где подынтегральная функция y=f(x) непрерывна на отрезке .

Разобьем отрезок на n равных интервалов длины h точками . В этом случае шаг разбиения находим как и узлы определяем из равенства .

Рассмотрим подынтегральную функцию на элементарных отрезках .

Возможны четыре случая (на рисунке показаны простейшие из них, к которым все сводится при бесконечном увеличении n ):


На каждом отрезке заменим функцию y=f(x) отрезком прямой, проходящей через точки с координатами и . Изобразим их на рисунке синими линиями:


В качестве приближенного значения интеграла возьмем выражение , то есть, примем .

Давайте выясним, что означает в геометрическом смысле записанное приближенное равенство. Это позволит понять, почему рассматриваемый метод численного интегрирования называется методом трапеций.

Мы знаем, что площадь трапеции находится как произведение полу суммы оснований на высоту. Следовательно, в первом случае площадь криволинейной трапеции приближенно равна площади трапеции с основаниями и высотой h , в последнем случае определенный интеграл приближенно равен площади трапеции с основаниями и высотой h , взятой со знаком минус. Во втором и третьем случаях приближенное значение определенного интеграла равно разности площадей красной и синей областей, изображенных на рисунке ниже.


Таким образом, мы подошли к сути метода трапеций , которая состоит в представлении определенного интеграла в виде суммы интегралов вида на каждом элементарном отрезке и в последующей приближенной замене .

Формула метода трапеций.

В силу пятого свойства определенного интеграла .

Если вместо интегралов подставить их приближенные значения, то получится :

Оценка абсолютной погрешности метода трапеций.

Абсолютная погрешность метода трапеций оценивается как
.

Графическая иллюстрация метода трапеций.

Приведем графическую иллюстрацию метода трапеций :

Примеры приближенного вычисления определенных интегралов методом трапеций.

Разберем на примерах применение метода трапеций при приближенном вычислении определенных интегралов.

В основном встречаются две разновидности заданий:

  • либо вычислить определенный интеграл методом трапеций для данного числа разбиения отрезка n ,
  • либо найти приближенное значение определенного интеграла с требуемой точностью.

Следует заметить, что при заданном n промежуточные вычисления следует проводить с достаточной степенью точности, причем, чем больше n , тем выше должна быть точность вычислений.

Если требуется вычислить определенный интеграл с заданной точностью, к примеру, до 0.01 , то промежуточные вычисления рекомендуем проводить на два-три порядка точнее, то есть, до 0.0001 - 0.00001 . Если указанная точность достигается при больших n , то промежуточные вычисления следует проводить с еще более высокой точностью.

Для примера возьмем определенный интеграл, значение которого мы можем вычислить по формуле Ньютона-Лейбница , чтобы можно было сравнивать этот результат с приближенным значением, полученным по методу трапеций.

Итак, .

Пример.

Вычислить определенный интеграл методом трапеций для n = 10 .

Решение.

Формула метода трапеций имеет вид . То есть, для ее применения нам достаточно вычислить шаг h по формуле , определить узлы и вычислить соответствующие значения подынтегральной функции .

Вычислим шаг разбиения: .

Определяем узлы и вычисляем значения подынтегральной функции в них (будем брать четыре знака после запятой):

Результаты вычислений для удобства представляем в виде таблицы:

Подставляем их в формулу метода трапеций:

Полученное значение совпадает до сотых со значением, вычисленным по формуле Ньютона-Лейбница.

Пример.

Вычислите определенный интеграл методом трапеций с точностью до 0.01 .

Решение.

Что мы имеем из условия: a = 1; b = 2 ; .

В этом случае первым делом находим количество точек разбиения отрезка интегрирования, то есть n . Мы это можем сделать, используя неравенство для оценки абсолютной погрешности . Таким образом, если мы найдем n , для которых будет выполняться неравенство , то формула трапеций при данных n даст нам приближенное значение определенного интеграла с требуемой точностью.

Найдем сначала наибольшее значение модуля второй производной функции на отрезке .

Вторая производная функции является квадратичной параболой , мы знаем из ее свойств, что она положительная и возрастающая на отрезке , поэтому . Как видите, в нашем примере процесс нахождения достаточно прост. В более сложных случаях обращайтесь к разделу . Если же найти очень сложно, то после этого примера мы приведем альтернативный метод действий.

Вернемся к нашему неравенству и подставим в него полученное значение:

Так как n – число натуральное (n - количество элементарных интервалов, на которые разбивается отрезок интегрирования), то можно брать n = 6, 7, 8, ... Возьмем n = 6 . Это позволит нам достичь требуемой точности метода трапеций при минимуме расчетов (хотя для нашего случая при n = 10 производить вычисления вручную удобнее).

Итак, n найдено, теперь действуем как в предыдущем примере.

Вычисляем шаг: .

Находим узлы сетки и значения подынтегральной функции в них:

Занесем в таблицу результаты расчетов:

Подставляем полученные результаты в формулу трапеций:

Вычислим исходный интеграл по формуле Ньютона-Лейбница, чтобы сравнить значения:

Следовательно, требуемая точность достигнута.

Следует отметить, что нахождение числа n из неравенства для оценки абсолютной погрешности является не очень простой процедурой, особенно для подынтегральных функций сложного вида. Поэтому логично прибегнуть к следующему методу.

Приближенное значение определенного интеграла, полученное по методу трапеций для n узлов, будем обозначать .

Выбираем произвольно число n , например n = 10 . Вычисляем по формуле метода трапеций исходный интеграл для n = 10 и для удвоенного числа узлов, то есть, для n = 20 . Находим абсолютную величину разности двух полученных приближенных значений . Если она меньше требуемой точности , то прекращаем вычисления и в качестве приближенного значения определенного интеграла берем значение , предварительно округлив его до требуемого порядка точности. В противном случае удваиваем количество узлов (берем n = 40 ) и повторяем действия.

Екатеринбург


Вычисление определенного интеграла

Введение

Задача численного интегрирования функций заключается в вычислении приближенного значения определенного интеграла:

, (1)

на основе ряда значений подынтегральной функции.{ f(x) |x=x k = f(x k) = y k }.

Формулы численного вычисления однократного интеграла называются квадратурными формулами, двойного и более кратного – кубатурными.

Обычный прием построения квадратурных формул состоит в замене подынтегральной функции f(x) на отрезке интерполирующей или аппроксимирующей функцией g(x) сравнительно простого вида, например, полиномом, с последующим аналитическим интегрированием. Это приводит к представлению

В пренебрежении остаточным членом R[f] получаем приближенную формулу

.

Обозначим через y i = f(x i) значение подинтегральной функции в различных точках

на . Квадратурные формулы являются формулами замкнутого типа, если x 0 =a , x n =b.

В качестве приближенной функции g(x) рассмотрим интерполяционный полином на

в форме полинома Лагранжа: , , при этом , где - остаточный член интерполяционной формулы Лагранжа.

Формула (1) дает

, (2) . (3)

В формуле (2) величины {

} называются узлами, {} – весами, - погрешностью квадратурной формулы. Если веса {} квадратурной формулы вычислены по формуле (3), то соответствующую квадратурную формулу называют квадратурной формулой интерполяционного типа.

Подведем итог.

} квадратурной формулы (2) при заданном расположении узлов не зависят от вида подынтегральной функции.

2. В квадратурных формулах интерполяционного типа остаточный член R n [f] может быть представлен в виде значения конкретного дифференциального оператора на функции f(x). Для

.

3. Для полиномов до порядка n включительно квадратурная формула (2) точна, т.е.

. Наивысшая степень полинома, для которого квадратурная формула точна, называется степенью квадратурной формулы.

Рассмотрим частные случаи формул (2) и (3): метод прямоугольников, трапеций, парабол (метод Симпсона). Названия этих методов обусловлены геометрической интерпретацией соответствующих формул.

Метод прямоугольников

Определенный интеграл функции от функции f(x):

численно равен площади криволинейной трапеции, ограниченной кривыми у=0, x=a, x=b, y=f(x) (рисунок. 1).
Рис. 1 Площадь под кривой y=f(x) Для вычисления этой площади весь интервал интегрирования разбивается на n равных подинтервалов длины h=(b-a)/n. Площадь под подынтегральной кривой приближенно заменяется на сумму площадей прямоугольников, как это показано на рисунке (2).
Рис. 2 Площадь под кривой y=f(x) аппроксимируется суммой площадей прямоугольников
Сумма площадей всех прямоугольников вычисляется по формуле (4)

Метод, представленный формулой (4), называется методом левых прямоугольников, а метод, представленный формулой(5) – методом правых прямоугольников:

(5) Погрешность вычисления интеграла определяется величиной шага интегрирования h. Чем меньше шаг интегрирования, тем точнее интегральная сумма S аппроксимирует значение интеграла I. Исходя из этого строится алгоритм для вычисления интеграла с заданной точностью. Считается, что интегральная сумма S представляет значение интеграла I c точностью eps, если разница по абсолютной величине между интегральными суммами и , вычисленными с шагом h и h/2 соответственно, не превышает eps.

Для нахождения определенного интеграла методом средних прямоугольников площадь, ограниченная прямыми a и b, разбивается на n прямоугольников с одинаковыми основаниями h, высотами прямоугольников будут точки пересечения функции f(x) с серединами прямоугольников (h/2). Интеграл будет численно равен сумме площадей n прямоугольников (рисунок 3).


Рис. 3 Площадь под кривой y=f(x) аппроксимируется суммой площадей прямоугольников ,

n – количество разбиений отрезка .

Метод трапеций

Для нахождения определенного интеграла методом трапеций площадь криволинейной трапеции также разбивается на n прямоугольных трапеций с высотами h и основаниями у 1 , у 2 , у 3 ,..у n , где n - номер прямоугольной трапеции. Интеграл будет численно равен сумме площадей прямоугольных трапеций (рисунок 4).


Рис. 4 Площадь под кривой y=f(x) аппроксимируется суммой площадей прямоугольных трапеций.

n – количество разбиений

(6)

Погрешность формулы трапеций оценивается числом

Погрешность формулы трапеций с ростом

уменьшается быстрее, чем погрешность формулы прямоугольников. Следовательно, формула трапеций позволяет получить большую точность, чем метод прямоугольников.

Формула Симпсона

Если для каждой пары отрезков

построить многочлен второй степени, затем проинтегрировать его на отрезке и воспользоваться свойством аддитивности интеграла, то получим формулу Симпсона. В методе Симпсона для вычисления определенного интеграла весь интервал интегрирования разбивается на подинтервалы равной длины h=(b-a)/n. Число отрезков разбиения является четным числом. Затем на каждой паре соседних подинтервалов подинтегральная функция f(x) заменяется многочленом Лагранжа второй степени (рисунок 5). Рис. 5 Функция y=f(x) на отрезке заменяется многочленом 2-го порядка Рассмотрим подынтегральную функцию на отрезке . Заменим эту подынтегральную функцию интерполяционным многочленом Лагранжа второй степени, совпадающим с y= в точках :

5.3 Метод трапеций

Выведем формулу трапеций так же, как и формулу прямоугольников, из геометрических соображений. Заменим график функции y = f(x) (рис.5.1) ломаной линией (рис.5.7), полученной следующим образом. Из точек a = x 0 , x 1 , x 2 ,…, x n = b проведем ординаты до пересечения с кривой y = f(x). Концы ординат соединим прямолинейными отрезками.

Тогда площадь криволинейной трапеции приближенно можно считать равной площади фигуры, составленной из трапеций. Так как площадь трапеции, построенной на отрезке длины h = , равна h , то, пользуясь этой формулой для i = 0, 2, … , n – 1, получим квадратурную формулу трапеций:

I=»I тр =h= (5.7)

Оценка погрешности. Для оценки погрешности формулы трапеций воспользуемся следующей теоремой.

Теорема 5.2. Пусть функция f дважды непрерывно дифференцируема на отрезке . Тогда для формулы трапеций справедлива следующая оценка погрешности:

| I – I тр | £ h 2 , (5.8)

где M 2 = |f "(x)|.

Пример 5.2.

Вычислим значение интеграла по формуле трапеций (5.7) и сравним полученный результат с результатом примера 5.1.

Используя таблицу значений функции eиз примера 5.1 и производя вычисления по формуле трапеций (5.7), получим: I тр = 0.74621079.

Оценим погрешность полученного значения. В примере (5.1) получили оценку: | f "(x)| £ M 2 = 2. Поэтому по формуле (5.8)

I – I тр | £ (0.1) 2 » 1.7× 10 -3 .

Сравнивая результаты примеров 5.1 и 5.2, видим, что метод средних прямоугольников имеет меньшую погрешность, т.е. он более точный.

5.4 Метод Симпсона (метод парабол)

Заменим график функции y = f(x) на отрезке , i = 0, 2, … , n – 1, параболой, проведенной через точки (x i , f(x i)), (x,f(x)), (x i+ 1 , f(x i+ 1)), где x - середина отрезка . Эта парабола есть интерполяционный многочлен второй степени L 2 (x) с узлами x i , x, x i+ 1 . Нетрудно убедиться, что уравнение этой параболы имеет вид:

f(x) + (x – x) + (x - x) 2 , (5.9)

Проинтегрировав функцию (5.9) на отрезке , получим

I i = » = (f(x i) + 4f(x) + f(x i+ 1)). (5.10)

Суммируя выражение (5.10) по i = 0, 1, 2, … , n – 1, получим квадратурную формулу Симпсона (или формулу парабол):

I =» I С = (f(x 0) + f(x n) + 4 + 2). (5.11)

Оценка погрешности. Для оценки погрешности формулы Симпсона воспользуемся следующей теоремой.

Теорема 5.2. Пусть функция f имеет на отрезке непрерывную производную четвертого порядка f (4) (x). Тогда для формулы Симпсона (5.9) справедлива следующая оценка погрешности:

| I – I С | £ h 4 , (5.12)

где M 4 = | f (4) (x)|.

Замечание. Если число элементарных отрезков, на которые делится отрезок , четно, т.е. n = 2m, то параболы можно проводить через узлы с целыми индексами, и вместо элементарного отрезка длины h рассматривать отрезок длины 2h. Тогда формула Симпсона примет вид:

I » (f(x 0) + f(x 2m) + 4 + 2), (5.13)

а вместо оценки (5.10) будет справедлива следующая оценка погрешности:

| I – I С | £ h 4 , (5.14)

Пример 5.3.

Вычислим значение интеграла по формуле Симпсона (5.11) и сравним полученный результат с результатами примеров 5.1 и 5.2.

Используя таблицу значений функции eиз примера 5.1 и производя вычисления по формуле Симпсона (5.11) , получим:

I С = 0.74682418.

Оценим погрешность полученного значения. Вычислим четвертую производную f (4) (x).

f (4) (x) = (16x 4 – 48x 2 + 12) e, | f (4) (x)| £ 12.


| I – I С | £ (0.1) 4 » 0.42 × 10 -6 .

Сравнивая результаты примеров 5.1, 5.2 и 5.3, видим, что метод Симпсона имеет меньшую погрешность, чем метод средних прямоугольников и метод трапеций.


Сегодня мы познакомимся с еще одним методом численного интегрирования, методом трапеций. С его помощью мы будем вычислять определенные интегралы с заданной степенью точности. В статье мы опишем суть метода трапеций, разберем, как выводится формула, сравним метод трапеции с методом прямоугольника, запишем оценку абсолютной погрешности метода. Каждый из разделов мы проиллюстрируем примерами для более глубокого понимания материала.

Yandex.RTB R-A-339285-1

Предположим, что нам нужно приближенно вычислить определенный интеграл ∫ a b f (x) d x , подынтегральная функция которого y = f (x) непрерывна на отрезке [ a ; b ] . Для этого разделим отрезок [ a ; b ] на несколько равных интервалов длины h точками a = x 0 < x 1 < x 2 < . . . < x n - 1 < x n = b . Обозначим количество полученных интервалов как n .

Найдем шаг разбиения: h = b - a n . Определим узлы из равенства x i = a + i · h , i = 0 , 1 , . . . , n .

На элементарных отрезках рассмотрим подынтегральную функцию x i - 1 ; x i , i = 1 , 2 , . . , n .

При бесконечном увеличении n сведем все случаи к четырем простейшим вариантам:

Выделим отрезки x i - 1 ; x i , i = 1 , 2 , . . . , n . Заменим на каждом из графиков функцию y = f (x) отрезком прямой, который проходит через точки с координатами x i - 1 ; f x i - 1 и x i ; f x i . Отметим их на рисунках синим цветом.

Возьмем выражение f (x i - 1) + f (x i) 2 · h в качестве приближенного значения интеграла ∫ x i - 1 x i f (x) d x . Т.е. примем ∫ x i - 1 x i f (x) d x ≈ f (x i - 1) + f (x i) 2 · h .

Давайте посмотрим, почему метод численного интегрирования, который мы изучаем, носит название метода трапеций. Для этого нам нужно выяснить, что с точки зрения геометрии означает записанное приближенное равенство.

Для того, чтобы вычислить площадь трапеции, необходимо умножить полусуммы ее оснований на высоту. В первом случае площадь криволинейной трапеции примерно равна трапеции с основаниями f (x i - 1) , f (x i) высотой h . В четвертом из рассматриваемых нами случаев заданный интеграл ∫ x i - 1 x f (x) d x приближенно равен площади трапеции с основаниями - f (x i - 1) , - f (x i) и высотой h , которую необходимо взять со знаком « - ». Для того, чтобы вычислить приближенное значение определенного интеграла ∫ x i - 1 x i f (x) d x во втором и третьем из рассмотренных случаев, нам необходимо найти разность площадей красной и синей областей, которые мы отметили штриховкой на расположенном ниже рисунке.

Подведем итоги. Суть метода трапеций заключается в следующем: мы можем представить определенный интеграл ∫ a b f (x) d x в виде суммы интегралов вида ∫ x i - 1 x i f (x) d x на каждом элементарном отрезке и в последующей приближенной замене ∫ x i - 1 x i f (x) d x ≈ f (x i - 1) + f (x i) 2 · h .

Формула метода трапеций

Вспомним пятое свойство определенного интеграла: ∫ a b f (x) d x = ∑ i = 1 n ∫ x i - 1 x i f (x) d x . Для того, чтобы получить формулу метода трапеций, необходимо вместо интегралов ∫ x i - 1 x i f (x) d x подставить их приближенные значения: ∫ x i - 1 x i f (x) d x = ∑ i = 1 n ∫ x i - 1 x i f (x) d x ≈ ∑ i = 1 n f (x i - 1) + f (x i) 2 · h = = h 2 · (f (x 0) + f (x 1) + f (x 1) + f (x 2) + f (x 2) + f (x 3) + . . . + f (x n)) = = h 2 · f (x 0) + 2 ∑ i = 1 n - 1 f (x i) + f (x n) ⇒ ∫ x i - 1 x i f (x) d x ≈ h 2 · f (x 0) + 2 ∑ i = 1 n - 1 f (x i) + f (x n)

Определение 1

Формула метода трапеций: ∫ x i - 1 x i f (x) d x ≈ h 2 · f (x 0) + 2 ∑ i = 1 n - 1 f (x i) + f (x n)

Оценка абсолютной погрешности метода трапеций

Оценим абсолютную погрешность метода трапеций следующим образом:

Определение 2

δ n ≤ m a x x ∈ [ a ; b ] f "" (x) · n · h 3 12 = m a x x ∈ [ a ; b ] f "" (x) · b - a 3 12 n 2

Графическая иллюстрация метода трапеций приведена на рисунке:

Примеры вычислений

Разберем примеры использования метода трапеций для приближенного вычисления определенных интегралов. Особое внимание уделим двум разновидностям заданий:

  • вычисление определенного интеграла методом трапеций для данного числа разбиения отрезка n;
  • нахождение приближенного значения определенного интеграла с оговоренной точностью.

При заданном n все промежуточные вычисления необходимо проводить с достаточно высокой степенью точности. Точность вычислений должна быть те выше, чем больше n .

Если мы имеем заданную точность вычисления определенного интеграла, то все промежуточные вычисления необходимо проводить на два и более порядков точнее. Например, если задана точность до 0 , 01 , то промежуточные вычисления мы проводим с точностью до 0 , 0001 или 0 , 00001 . При больших n промежуточные вычисления необходимо проводить с еще более высокой точностью.

Рассмотрим приведенное выше правило на примере. Для этого сравним значения определенного интеграла, вычисленного по формуле Ньютона-Лейбница и полученного по методу трапеций.

Итак, ∫ 0 5 7 d x x 2 + 1 = 7 a r c t g (x) 0 5 = 7 a r c t g 5 ≈ 9 , 613805 .

Пример 1

Вычислим по методу трапеций определенный интеграл ∫ 0 5 7 x 2 + 1 d x для n равным 10 .

Решение

Формула метода трапеций имеет вид ∫ x i - 1 x i f (x) d x ≈ h 2 · f (x 0) + 2 ∑ i = 1 n - 1 f (x i) + f (x n)

Для того, чтобы применить формулу, нам необходимо вычислить шаг h по формуле h = b - a n , определить узлы x i = a + i · h , i = 0 , 1 , . . . , n , вычислить значения подынтегральной функции f (x) = 7 x 2 + 1 .

Шаг разбиения вычисляется следующим образом: h = b - a n = 5 - 0 10 = 0 . 5 . Для вычисления подынтегральной функции в узлах x i = a + i · h , i = 0 , 1 , . . . , n будем брать четыре знака после запятой:

i = 0: x 0 = 0 + 0 · 0 . 5 = 0 ⇒ f (x 0) = f (0) = 7 0 2 + 1 = 7 i = 1: x 1 = 0 + 1 · 0 . 5 = 0 . 5 ⇒ f (x 1) = f (0 . 5) = 7 0 , 5 2 + 1 = 5 , 6 . . . i = 10: x 10 = 0 + 10 · 0 . 5 = 5 ⇒ f (x 10) = f (5) = 7 5 2 + 1 ≈ 0 , 2692

Внесем результаты вычислений в таблицу:

i 0 1 2 3 4 5 6 7 8 9 10
x i 0 0 . 5 1 1 , 5 2 2 , 5 3 3 , 5 4 4 , 5 5
f (x i) 7 5 , 6 3 , 5 2 , 1538 1 , 4 0 , 9655 0 , 7 0 , 5283 0 , 4117 0 , 3294 0 , 2692

Подставим полученные значения в формулу метода трапеций: ∫ 0 5 7 d x x 2 + 1 ≈ h 2 · f (x 0) + 2 ∑ i = 1 n - 1 f (x i) + f (x n) = = 0 , 5 2 · 7 + 2 · 5 , 6 + 3 , 5 + 2 , 1538 + 1 , 4 + 0 , 9655 + 0 , 7 + 0 , 5283 + 0 , 4117 + 0 , 3294 + 0 , 2692 = 9 , 6117

Сравним наши результаты с результатами, вычисленными по формуле Ньютона-Лейбница. Полученные значения совпадают до сотых.

Ответ: ∫ 0 5 7 d x x 2 + 1 = 9 , 6117

Пример 2

Вычислим по методу трапеций значение определенного интеграла ∫ 1 2 1 12 x 4 + 1 3 x - 1 60 d x с точностью до 0 , 01 .

Решение

Согласно условию задачи a = 1 ; b = 2 , f (x) = 1 12 x 4 + 1 3 x - 1 60 ; δ n ≤ 0 , 01 .

Найдем n , которое равно количеству точек разбиения отрезка интегрирования, с помощью неравенства для оценки абсолютной погрешности δ n ≤ m a x x ∈ [ a ; b ] f "" (x) · (b - a) 3 12 n 2 . Сделаем мы это следующим образом: мы найдем значения n , для которых будет выполняться неравенство m a x x ∈ [ a ; b ] f "" (x) · (b - a) 3 12 n 2 ≤ 0 , 01 . При данных n формула трапеций даст нам приближенное значение определенного интеграла с заданной точностью.

Для начала найдем наибольшее значение модуля второй производной функции на отрезке [ 1 ; 2 ] .

f " (x) = 1 12 x 4 + 1 3 x - 1 60 " = 1 3 x 3 + 1 3 ⇒ f "" (x) = 1 3 x 3 + 1 3 " = x 2

Вторая производная функция является квадратичной параболой f "" (x) = x 2 . Из ее свойств мы знаем, что она положительная и возрастает на отрезке [ 1 ; 2 ] . В связи с этим m a x x ∈ [ a ; b ] f "" (x) = f "" (2) = 2 2 = 4 .

В приведенном примере процесс нахождения m a x x ∈ [ a ; b ] f "" (x) оказался достаточно простым. В сложных случаях для проведения вычислений можно обратиться к наибольшим и наименьшим значениям функции. После рассмотрения данного примера мы приведем альтернативный метод нахождения m a x x ∈ [ a ; b ] f "" (x) .

Подставим полученное значение в неравенство m a x x ∈ [ a ; b ] f "" (x) · (b - a) 3 12 n 2 ≤ 0 , 01

4 · (2 - 1) 3 12 n 2 ≤ 0 , 01 ⇒ n 2 ≥ 100 3 ⇒ n ≥ 5 , 7735

Количество элементарных интервалов, на которые разбивается отрезок интегрирования n является натуральным числом. Для поведения вычислений возьмем n равное шести. Такое значение n позволит нам достичь заданной точности метода трапеций при минимуме расчетов.

Вычислим шаг: h = b - a n = 2 - 1 6 = 1 6 .

Найдем узлы x i = a + i · h , i = 1 , 0 , . . . , n , определим значения подынтегральной функции в этих узлах:

i = 0: x 0 = 1 + 0 · 1 6 = 1 ⇒ f (x 0) = f (1) = 1 12 · 1 4 + 1 3 · 1 - 1 60 = 0 , 4 i = 1: x 1 = 1 + 1 · 1 6 = 7 6 ⇒ f (x 1) = f 7 6 = 1 12 · 7 6 4 + 1 3 · 7 6 - 1 60 ≈ 0 , 5266 . . . i = 6: x 10 = 1 + 6 · 1 6 = 2 ⇒ f (x 6) = f (2) = 1 12 · 2 4 + 1 3 · 2 - 1 60 ≈ 1 , 9833

Результаты вычислений запишем в виде таблицы:

i 0 1 2 3 4 5 6
x i 1 7 6 4 3 3 2 5 3 11 6 2
f x i 0 , 4 0 , 5266 0 , 6911 0 , 9052 1 , 1819 1 , 5359 1 , 9833

Подставим полученные результаты в формулу трапеций:

∫ 1 2 1 12 x 4 + 1 3 x - 1 60 d x ≈ h 2 · f (x 0) + 2 ∑ i = 1 n - 1 f (x i) + f (x n) = = 1 12 · 0 , 4 + 2 · 0 , 5266 + 0 , 6911 + 0 , 9052 + 1 , 1819 + 1 , 5359 + 1 , 9833 ≈ 1 , 0054

Для проведения сравнения вычислим исходный интеграл по формуле Ньютона-Лейбница:

∫ 1 2 1 12 x 4 + 1 3 x - 1 60 d x = x 5 60 + x 2 6 - x 60 1 2 = 1

Как видим, полученной точности вычислений мы достигли.

Ответ: ∫ 1 2 1 12 x 4 + 1 3 x - 1 60 d x ≈ 1 , 0054

Для подынтегральных функций сложного вида нахождение числа n из неравенства для оценки абсолютной погрешности не всегда просто. В этом случае будет уместен следующий метод.

Обозначим приближенное значение определенного интеграла, которое было получено по методу трапеций для n узлов, как I n . Выберем произвольное число n . По формуле метода трапеций вычислим исходный интеграл при одинарном (n = 10) и удвоенном (n = 20) числе узлов и найдем абсолютную величину разности двух полученных приближенных значений I 20 - I 10 .

Если абсолютная величина разности двух полученных приближенных значений меньше требуемой точности I 20 - I 10 < δ n , то мы прекращаем вычисления и выбираем значение I 20 , которое можно округлить до требуемого порядка точности.

Если абсолютная величина разности двух полученных приближенных значений больше требуемой точности, то необходимо повторить действия с удвоенным количеством узлов (n = 40) .

Такой метод требует проведения большого объема вычислений, поэтому разумно использовать вычислительную технику для экономии времени.

Решим с помощью приведенного выше алгоритма задачу. С целью экономии времени опустим промежуточные вычисления по методу трапеций.

Пример 3

Необходимо вычислить определенный интеграл ∫ 0 2 x e x d x по методу трапеций с точностью до 0 , 001 .

Решение

Возьмем n равное 10 и 20 . По формуле трапеций получим I 10 = 8 , 4595380 , I 20 = 8 , 4066906 .

I 20 - I 10 = 8 , 4066906 - 8 , 4595380 = 0 , 0528474 > 0 , 001 , что требует продолжения вычислений.

Возьмем n равное 40: I 40 = 8 , 3934656 .

I 40 - I 20 = 8 , 3934656 - 8 , 4066906 = 0 , 013225 > 0 , 001 , что также требует продолжения вычислений.

Возьмем n равное 80: I 80 = 8 , 3901585 .

I 80 - I 40 = 8 , 3901585 - 8 , 3934656 = 0 , 0033071 > 0 , 001 , что требует проведения еще одного удвоения числа узлов.

Возьмем n равное 160: I 160 = 8 , 3893317 .

I 160 - I 80 = 8 , 3893317 - 8 , 3901585 = 0 , 0008268 < 0 , 001

Получить приближенное значение исходного интеграла можно округлив I 160 = 8 , 3893317 до тысячных: ∫ 0 2 x e x d x ≈ 8 , 389 .

Для сравнения вычислим исходный определенный интеграл по формуле Ньютона-Лейбница: ∫ 0 2 x e x d x = e x · (x - 1) 0 2 = e 2 + 1 ≈ 8 , 3890561 . Требуемая точность достигнута.

Ответ: ∫ 0 2 x e x d x ≈ 8 , 389

Погрешности

Промежуточные вычисления для определения значения определенного интеграла проводят в большинстве своем приближенно. Это значит, что при увеличении n начинает накапливаться вычислительная погрешность.

Сравним оценки абсолютных погрешностей метода трапеций и метода средних прямоугольников:

δ n ≤ m a x x ∈ [ a ; b ] f "" (x) n · h 3 12 = m a x x ∈ [ a ; b ] f "" (x) · b - a 3 12 n 2 δ n ≤ m a x x ∈ [ a ; b ] f "" (x) n · h 3 24 = m a x x ∈ [ a ; b ] f "" (x) · b - a 3 24 n 2 .

Метод прямоугольников для заданного n при одинаковом объеме вычислительной работы дает вдвое меньшую погрешность. Это делает метод более предпочтительным в тех случаях, когда известны значения функции в средних отрезках элементарных отрезков.

В тех случаях, когда интегрируемые функции задаются не аналитически, а в виде множества значений в узлах, мы можем использовать метод трапеций.

Если сравнивать точность метода трапеций и метода правых и левых прямоугольников, то первый метод превосходит второй в точности результата.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter