В чем смысл закона хаббла. Постоянная хаббла и эволюция стационарной вселенной

Великим физикам прошлого И. Ньютону и А. Эйнштейну Вселенная представлялась статичной. Советский физик А. Фридман в 1924 г. выступил с теорией «разбегающихся» галактик. Фридман предсказал расширение Вселенной. Это было революционным переворотом в физическом представлении о нашем мире.

Американский астроном Эдвин Хаббл исследовал туманность Андромеды. К 1923 году ему удалось рассмотреть, что ее окраины представляют собой скопления отдельных звезд. Хаббл рассчитал расстояние до туманности. У него оказалось – 900 000 световых лет (более точно рассчитанное на сегодняшний день расстояние составляет 2,3 миллиона световых лет). То есть туманность находится далеко за пределами Млечного Пути – Нашей Галактики. Пронаблюдав эту и другие туманности, Хаббл пришел к выводу о структуре Вселенной.

Вселенная состоит из набора огромных звездных скоплений – галактик .

Именно они и представляются нам в небе далекими туманными «облаками», поскольку отдельных звезд на столь огромном удалении мы рассмотреть попросту не можем.

Э. Хаббл подметил важный аспект в полученных данных, который астрономы наблюдали и прежде, но интерпретировать затруднялись. А именно: наблюдаемая длина спектральных световых волн, излучаемых атомами удаленных галактик, несколько больше длины спектральных волн, излучаемых теми же атомами в условиях земных лабораторий. То есть в спектре излучения соседних галактик квант света, излучаемый атомом при скачке электрона с орбиты на орбиту, смещен по частоте в направлении красной части спектра по сравнению с аналогичным квантом, испущенным таким же атомом на Земле. Хаббл взял на себя смелость интерпретировать это наблюдение как проявление эффекта Доплера.

Все наблюдаемые соседние галактики удаляются от Земли, поскольку практически у всех галактических объектов за пределами Млечного Пути наблюдается именно красное спектральное смещение, пропорциональное скорости их удаления.

Самое главное, Хабблу удалось сопоставить результаты своих измерений расстояний до соседних галактик с измерениями скоростей их удаления (по красному смещению).

Математически закон формулируется очень просто:

где v – скорость удаления галактики от нас,

r – расстояние до нее,

H – постоянная Хаббла.

И, хотя изначально Хаббл пришел к этому закону по результатом наблюдения всего нескольких ближайших к нам галактик, ни одна из множества открытых с тех пор новых, все более удаленных от Млечного Пути галактик видимой Вселенной, из-под действия этого закона не выпадает.

Итак, главное следствие закона Хаббла:

Вселенная расширяется.

Расширяется сама ткань мирового пространства. Все наблюдатели (и мы с вами не исключение) считают себя находящимися в центре Вселенной.

4. Теория Большого Взрыва

Из экспериментального факта разбегания галактик был оценен возраст Вселенной. Он оказался равным – около 15 миллиардов лет! Так началась эпоха современной космологии.

Естественно возникает вопрос: а что было в начале? Всего около 20 лет понадобилось ученым, чтобы вновь полностью перевернуть представления о Вселенной.

Ответ предложил выдающийся физик Г. Гамов (1904 – 1968) в 40-ые годы. История нашего мира началась с Большого взрыва. Именно так думает большинство астрофизиков и cегодня.

Большой взрыв – это стремительное падение изначально огромной плотности, температуры и давления вещества, сконцентрированного в очень малом объеме Вселенной. Все вещество мироздания было сжато в плотный комок протоматерии, заключенный в совсем небольшом в сопоставлении с нынешними масштабами Вселенной объеме.

Представление о Вселенной, родившейся из сверхплотного сгустка сверхгорячего вещества и с тех пор расширяющейся и остывающей, получило название теории Большого взрыва.

Более удачной космологической модели происхождения и эволюции Вселенной на сегодня не имеется.

Согласно теории Большого взрыва, ранняя Вселенная состояла из фотонов, электронов и других частиц. Фотоны постоянно взаимодействовали с остальными частицами. По мере расширения Вселенной, она остывала, и на определенном этапе электроны стали соединяться с ядрами водорода и гелия и образовывать атомы. Это случилось при температуре около 3000 К и примерном возрасте Вселенной 400 000 лет. С этого момента фотоны смогли свободно перемещаться в пространстве, практически не взаимодействуя с веществом. Но нам остались «свидетели» той эпохи – это реликтовые фотоны. Считается, что реликтовое излучение сохранилось с начальных этапов существования Вселенной и равномерно ее заполняет. В результате дальнейшего остывания излучения его температура снизилась и сейчас составляет около 3 К.

Существование реликтового излучения было предсказано теоретически в рамках теории Большого взрыва. Оно рассматривается как одно из главных подтверждений теории Большого взрыва.

) со скоростью его удаления. Обычно обозначается буквой H . Имеет размерность, обратную времени (H = 2,3·10 −18 с −1), но выражается обычно в км/с на мегапарсек .

Наиболее надёжная оценка постоянной Хаббла на 2010 год составляет 70,4+1,3 -1,4 (км/с)/Мпк ; таким образом, в современную эпоху две галактики, разделённые расстоянием в 1 Мпк, в среднем разлетаются со скоростью ~70 км/с. В моделях расширяющейся Вселенной постоянная Хаббла изменяется со временем, но термин «постоянная» оправдан тем, что в каждый данный момент времени во всех точках Вселенной постоянная Хаббла одинакова. Величина, обратная постоянной Хаббла, имеет смысл характерного времени расширения Вселенной на текущий момент. Для значения постоянной Хаббла, равной 70,4 (км/с)/Мпк (или 2,28·10 −18 c −1), время жизни Вселенной составляет около 4,38·10 17 с или 13,9·10 9 лет.

Примечания

См. также

Ссылки


Wikimedia Foundation . 2010 .

Смотреть что такое "Постоянная Хаббла" в других словарях:

    - (обозначение Н0), показатель скорости удаления галактик (КРАСНОЕ СМЕЩЕНИЕ), который возрастает с увеличением расстояния от нас, согласно ЗАКОНУ ХАББЛА. Нулевой индекс означает, что эта величина определяет уровень расширения пространства в… … Научно-технический энциклопедический словарь

    Закон Хаббла (закон всеобщего разбегания галактик) правило физической космологии, согласно которому красное смещение удалённых объектов пропорционально их расстоянию от наблюдателя. Таким образом, чем дальше от нас галактика, тем быстрее она от… … Википедия

    Скорость v удаления астрономич. объекта пропорциональна расстоянию r до него, т.е. v = Hr, где Я постоянная Хаббла. Закон хорошо выполняется для галактик, не входящих в скопления, и скоплений галактик как целого. Открыт Э. Хабблом в 1929 при… …

    - (по имени амер. астронома Э. Хаббла (E. Hubble)) (Н), коэффициент пропорциональности между скоростями удаления внегалактич. объектов, вызванного космологич. расширением видимой Вселенной, и расстояниями r(t) =r0 R(t) до них (Л т. н. масштабный… … Физическая энциклопедия

    - (обозначается Н) коэффициент в законе Хаббла, выражающем линейную связь скорости v космологического разбегания (разлета) скоплений галактик в зависимости от расстояния r до них: v = Hr, где H ? 50 100 км/(с.Мпк) … Большой Энциклопедический словарь

    Пропорциональность скорости uудаления внегалактич. объекта расстоянию до него r: где Н Хаббла постоянная. X. з. хорошо выполняется для галактик, не входящих в скопления, и скоплений галактик как целого. Открыт Э. П. Хабблом (E. P. Hubble) в 1929… … Физическая энциклопедия

    - (обозначается Н), коэффициент в законе Хаббла, выражающем линейную связь скорости v космологического разбегания («разлёта») скоплений галактик в зависимости от расстояния r до них: v = Hr, где H; 50 100 км/(с·Мпк). * * * ХАББЛА ПОСТОЯННАЯ ХАББЛА… … Энциклопедический словарь

    - (обозначается Я), коэф. в законе Хаббла, выражающем линейную связь скорости v космологич. разбегания (разлёта) скоплений галактик с расстоянием r до них: v = Hr, где H 50 100 км/(с*Мпк). Назв. по имени Э. Хаббла … Естествознание. Энциклопедический словарь

    - (Н) коэффициент, выражающий линейную связь скорости v космологического разбегания скоплений галактик в зависимости от расстояния r до них: v = Нr (закон Xаббла), где H = 100 км/с·Мпк. Названа в честь американского астронома Э. П. Хаббла (1889… … Астрономический словарь

    Постоянная Хаббла коэффициент, входящий в закон Хаббла, который связывает расстояние до внегалактического объекта (галактики, квазара) со скоростью его удаления. Имеет размерность, обратную времени (H=2,3×10 18 с 1), но выражается обычно в км/с… … Википедия

С 30-х годов XX века астрофизики уже знали, что, согласно закону Хаббла , Вселенная расширяется, а значит, она имела свое начало в определенный момент в прошлом. Задача астрофизиков, таким образом, внешне выглядела простой: отследить все стадии хаббловского расширения в обратной хронологии, применяя на каждой стадии соответствующие физические законы, и, пройдя этот путь до конца -- точнее, до самого начала, -- понять, как именно всё происходило.

В конце 1970-х годов, однако, оставались нерешенными несколько фундаментальных проблем, связанных с ранней Вселенной, а именно:

  • · Проблема антивещества . Согласно законам физики, вещество и антивещество имеют равное право на существование во Вселенной (см. Античастицы ), однако Вселенная практически полностью состоит из вещества. Почему так произошло?
  • · Проблема горизонта. По фоновому космическому излучению (см. Большой взрыв ) мы можем определить, что температура Вселенной везде примерно одинакова, однако отдельные ее части (скопления галактик) не могли находиться в контакте (как принято говорить, они были за пределами горизонта друг друга). Как же получилось, что между ними установилось тепловое равновесие?
  • · Проблема распрямления пространства. Вселенная, судя по всему, обладает именно той массой и энергией, которые необходимы для того, чтобы замедлить и остановить хаббловское расширение. Почему из всех возможных масс Вселенная имеет именно такую?

Ключом к решению этих проблем послужила идея, что сразу после своего рождения Вселенная была очень плотной и очень горячей. Всё вещество в ней представляло собой раскаленную массу кварков и лептонов (см. Стандартная модель ), у которых не было никакой возможности объединиться в атомы. Действующим в современной Вселенной различным силам (таким, как электромагнитные и гравитационные силы) тогда соответствовало единое поле силового взаимодействия (см. Универсальные теории ). Но когда Вселенная расширилась и остыла, гипотетическое единое поле распалось на несколько сил (см. Ранняя Вселенная ).

В 1981 году американский физик Алан Гут осознал, что выделение сильных взаимодействий из единого поля, случившееся примерно через 10- 35 секунды после рождения Вселенной (только задумайтесь -- это 34 нуля и единица после запятой!), стало поворотным моментом в ее развитии. Произошел фазовый переход вещества из одного состояния в другое в масштабах Вселенной -- явление, подобное превращению воды в лед. И как при замерзании воды ее беспорядочно движущиеся молекулы вдруг «схватываются» и образуют строгую кристаллическую структуру, так под влиянием выделившихся сильных взаимодействий произошла мгновенная перестройка, своеобразная «кристаллизация» вещества во Вселенной.

Тот, кто видел, как лопаются водопроводные трубы или трубки автомобильного радиатора на сильном морозе, стоит только воде в них превратиться в лед, тот на собственном опыте знает, что вода при замерзании расширяется. Алану Гуту удалось показать, что при разделении сильных и слабых взаимодействий во Вселенной произошло нечто подобное -- скачкообразное расширение. Это расширение, которое называется инфляционным , во много раз быстрее обычного хаббловского расширения. Примерно за 10- 32 секунды Вселенная расширилась на 50 порядков -- была меньше протона, а стала размером с грейпфрут (для сравнения: вода при замерзании расширяется всего на 10%). И это стремительное инфляционное расширение Вселенной снимает две из трех вышеназванных проблем, непосредственно объясняя их.

Решение проблемы распрямления пространства нагляднее всего демонстрирует следующий пример: представьте координатную сетку, нарисованную на тонкой эластичной карте, которую затем смяли как попало. Если теперь взять и сильно встряхнуть эту смятую в комок эластичную карту, она снова примет плоский вид, а координатные линии на ней восстановятся, независимо от того, насколько сильно мы деформировали ее, когда скомкали. Аналогичным образом, не важно, насколько искривленным было пространство Вселенной на момент начала ее инфляционного расширения, главное -- по завершении этого расширения пространство оказалось полностью распрямленным. А поскольку из теории относительности мы знаем, что кривизна пространства зависит от количества материи и энергии в нем, становится понятно, почему во Вселенной находится ровно столько материи, сколько необходимо, чтобы уравновесить хаббловское расширение.

Объясняет инфляционная модель и проблему горизонта , хотя не так прямо. Из теории излучения черного тела мы знаем, что излучение, испускаемое телом, зависит от его температуры. Таким образом, по спектрам излучения удаленных участков Вселенной мы можем определить их температуру. Такие измерения дали ошеломляющие результаты: оказалось, что в любой наблюдаемой точке Вселенной температура (с погрешностью измерения до четырех знаков после запятой) одна и та же. Если исходить из модели обычного хаббловского расширения, то вещество сразу же после Большого взрыва должно было разлететься слишком далеко, чтобы температуры могли уравняться. Согласно же инфляционной модели, вещество Вселенной до момента t = 10- 35 секунды оставалось гораздо более компактным, чем при хаббловском расширении. Этого чрезвычайно краткого периода было вполне достаточно, чтобы установилось термическое равновесие, которое не было нарушено на стадии инфляционного расширения и сохранилось до сих пор.

Инфляционная гипотеза не снимает проблемы антивещества , но эту проблему можно объяснить, обратившись к другим процессам, происходившим в то же время. Обнаруживаются интересные вещи: при бурном образовании элементарных частиц в ранней Вселенной примерно на 100 000 001 обычных частиц пришлось 100 000 000 античастиц. В следующую долю секунды частицы и античастицы, объединившись в пары, аннигилировали друг друга с гигантским выбросом энергии -- масса превратилась в излучение. После такой «прополки» во Вселенной остался лишь жалкий клочок обычной материи. Вот из этого «космического мусора» и состоит вся известная нам сегодня Вселенная.

Вернувшись с первой мировой войны, Эдвин Хаббл устроился на работу в высокогорную астрономическую обсерваторию Маунт-Вилсон в Южной Калифорнии, которая в те годы была лучшей в мире по оснащенности. Используя ее новейший телескоп-рефлектор с диаметром главного зеркала 2,5 м, он провел серию любопытных измерений, навсегда перевернувших наши представления о Вселенной.

Вообще-то, Хаббл намеревался исследовать одну застаревшую астрономическую проблему -- природу туманностей. Эти загадочные объекты, начиная с XVIII века, волновали ученых таинственностью своего происхождения. К XX веку некоторые из этих туманностей разродились звездами и рассосались, однако большинство облаков так и остались туманными -- и по своей природе, в частности. Тут ученые и задались вопросом: а где, собственно, эти туманные образования находятся -- в нашей Галактике? или часть из них представляют собой иные «островки Вселенной», если выражаться изощренным языком той эпохи? До ввода в действие телескопа на горе Уилсон в 1917 году этот вопрос стоял чисто теоретически, поскольку для измерения расстояний до этих туманностей технических средств не имелось.

Начал свои исследования Хаббл с самой, пожалуй, популярной с незапамятных времен туманности Андромеды. К 1923 году ему удалось рассмотреть, что окраины этой туманности представляют собой скопления отдельных звезд, некоторые из которых принадлежат к классу переменных цефеид (согласно астрономической классификации). Наблюдая за переменной цефеидой на протяжении достаточно длительного времени, астрономы измеряют период изменения ее светимости, а затем по зависимости период--светимость определяют и количество испускаемого ею света.

Чтобы лучше понять, в чем заключается следующий шаг, приведем такую аналогию. Представьте, что вы стоите в беспросветно темной ночи, и тут вдалеке кто-то включает электрическую лампу. Поскольку ничего, кроме этой далекой лампочки, вы вокруг себя не видите, определить расстояние до нее вам практически невозможно. Может, она очень яркая и светится далеко, а может, тусклая и светится неподалеку. Как это определить? А теперь представьте, что вам каким-то образом удалось узнать мощность лампы -- скажем, 60, 100 или 150 ватт. Задача сразу упрощается, поскольку по видимой светимости вы уже сможете примерно оценить геометрическое расстояние до нее. Так вот: измеряя период изменения светимости цефеиды, астроном находится примерно в той же ситуации, как и вы, рассчитывая расстояние до удаленной лампы, зная ее светосилу (мощность излучения).

Первое, что сделал Хаббл, -- рассчитал расстояние до цефеид на окраинах туманности Андромеды, а значит, и до самой туманности: 900 000 световых лет (более точно рассчитанное на сегодняшний день расстояние до галактики Андромеды, как ее теперь называют, составляет 2,3 миллиона световых лет. -- Прим. автора ) -- то есть туманность находится далеко за пределами Млечного Пути -- нашей галактики. Пронаблюдав эту и другие туманности, Хаббл пришел к базовому выводу о структуре Вселенной: она состоит из набора огромных звездных скоплений -- галактик . Именно они и представляются нам в небе далекими туманными «облаками», поскольку отдельных звезд на столь огромном удалении мы рассмотреть попросту не можем. Одного этого открытия, вообще-то, хватило бы Хабблу для всемирного признания его заслуг перед наукой.

Ученый, однако, этим не ограничился и подметил еще один важный аспект в полученных данных, который астрономы наблюдали и прежде, но интерпретировать затруднялись. А именно: наблюдаемая длина спектральных световых волн, излучаемых атомами удаленных галактик, несколько ниже длины спектральных волн, излучаемых теми же атомами в условиях земных лабораторий. То есть в спектре излучения соседних галактик квант света, излучаемый атомом при скачке электрона с орбиты на орбиту, смещен по частоте в направлении красной части спектра по сравнению с аналогичным квантом, испущенным таким же атомом на Земле. Хаббл взял на себя смелость интерпретировать это наблюдение как проявление эффекта Доплера , а это означает, что все наблюдаемые соседние галактики удаляются от Земли, поскольку практически у всех галактических объектов за пределами Млечного Пути наблюдается именно красное спектральное смещение, пропорциональное скорости их удаления.

Самое главное, Хабблу удалось сопоставить результаты своих измерений расстояний до соседних галактик (по наблюдениям переменных цефеид) с измерениями скоростей их удаления (по красному смещению). И Хаббл выяснил, что чем дальше от нас находится галактика, тем с большей скоростью она удаляется. Это самое явление центростремительного «разбегания» видимой Вселенной с нарастающей скоростью по мере удаления от локальной точки наблюдения и получило название закона Хаббла. Математически он формулируется очень просто:

где v -- скорость удаления галактики от нас,

r -- расстояние до нее, а

H -- так называемая постоянная Хаббла .

Последняя определяется экспериментально, и на сегодняшний день оценивается как равная примерно 70 км/(с·Мпк) (километров в секунду на мегапарсек; 1 Мпк приблизительно равен 3,3 миллионам световых лет). А это означает, что галактика, удаленная от нас на расстояние 10 мегапарсек, убегает от нас со скоростью 700 км/с, галактика, удаленная на 100 Мпк, -- со скоростью 7000 км/с, и т. д. И, хотя изначально Хаббл пришел к этому закону по результатом наблюдения всего нескольких ближайших к нам галактик, ни одна из множества открытых с тех пор новых, всё более удаленных от Млечного Пути галактик видимой Вселенной из-под действия этого закона не выпадает.

Итак, главное и -- казалось бы -- невероятное следствие закона Хаббла: Вселенная расширяется! Мне этот образ нагляднее всего представляется так: галактики -- изюмины в быстро всходящем дрожжевом тесте. Представьте себя микроскопическим существом на одной из изюмин, тесто для которого представляется прозрачным: и что вы увидите? Поскольку тесто поднимается, все прочие изюмины от вас удаляются, причем чем дальше изюмина, тем быстрее она удаляется от вас (поскольку между вами и далекими изюминами больше расширяющегося теста, чем между вами и ближайшими изюминами). В то же время, вам будет представляться, что это именно вы находитесь в самом центре расширяющегося вселенского теста, и в этом нет ничего странного -- если бы вы оказались на другой изюмине, вам всё представлялось бы в точности так же. Так и галактики разбегаются по одной простой причине: расширяется сама ткань мирового пространства. Все наблюдатели (и мы с вами не исключение) считают себя находящимися в центре Вселенной. Лучше всего это сформулировал мыслитель XV века Николай Кузанский: «Любая точка есть центр безграничной Вселенной».

Однако закон Хаббла подсказывает нам и еще кое-что о природе Вселенной -- и это «кое-что» является вещью просто-таки экстраординарной. У Вселенной было начало во времени. И это весьма несложное умозаключение: достаточно взять и мысленно «прокрутить назад» условную кинокартину наблюдаемого нами расширения Вселенной -- и мы дойдем до точки, когда всё вещество мироздания было сжато в плотный комок протоматерии, заключенный в совсем небольшом в сопоставлении с нынешними масштабами Вселенной объеме. Представление о Вселенной, родившейся из сверхплотного сгустка сверхгорячего вещества и с тех пор расширяющейся и остывающей, получило название теории Большого взрыва , и более удачной космологической модели происхождения и эволюции Вселенной на сегодня не имеется. Закон Хаббла, кстати, помогает также оценить возраст Вселенной (конечно, весьма упрощенно и приблизительно). Предположим, что все галактики с самого начала удалялись от нас с той же скоростью v , которую мы наблюдаем сегодня. Пусть t -- время, прошедшее с начала их разлета. Это и будет возраст Вселенной, и определяется он соотношениями:

v x t = r, или t = r /V

Но ведь из закона Хаббла следует, что

r /v = 1/H

где Н -- постоянная Хаббла. Значит, измерив скорости удаления внешних галактик и экспериментально определив Н , мы тем самым получаем и оценку времени, в течение которого галактики разбегаются. Это и есть предполагаемое время существования Вселенной. Постарайтесь запомнить: по самым последним оценкам, возраст нашей Вселенной составляет около 15 миллиардов лет, плюс-минус несколько миллиардов лет. (Для сравнения: возраст Земли оценивается в 4,5 миллиардов лет, а жизнь на ней зародилась около 4 миллиардов лет назад.) Кажущаяся скорость удаления галактики от нас прямо пропорциональна расстоянию до нее.

ПОСТОЯННАЯ ХАББЛА

И ЭВОЛЮЦИЯ СТАЦИОНАРНОЙ ВСЕЛЕННОЙ

Рассмотрен физический смысл параметра Хаббла и вытекающие из него следствия. Показано, что эволюция Вселенной может быть описана в рамках стационарной модели, если параметр Хаббла преобразовать в ускорение скорости расширения видимой части Вселенной, а гравитационную постоянную интерпретировать как ускорение скорости увеличения удельного объема пространства Вселенной с момента разделения первичной (и неизвестной нам) формы существования материи на вещество и пространство. Соответственно, формула Хаббла будет определять не скорость удаления объекта от наблюдателя, а разницу в скоростях распространения электромагнитных волн между современной эпохой и тем временем, когда измеряемое нами излучение покинуло тот или иной объект.

В 1929 году американский адвокат и выдающийся астроном Эдвин Хаббл выдвинул предположение о том, что звезды, находящиеся за пределами нашей галактики, удаляются от нас с огромной скоростью. Это предположение было основано на многочисленных измерениях величин красного смещения в спектрах далеких от нашей галактики цефеид и представлениях Христиана Допплера о непосредственной связи изменения длин световых волн со скоростью и вектором движения источника излучения. Обнаружив, что смещение спектральных линий одних тех же элементов в спектрах внегалактических объектов в красную сторону пропорционально расстоянию до этих объектов, Хаббл заключил, что чем дальше находится источник излучения, тем больше скорость его удаления, равно как и скорость удаления Земли от наблюдаемого нами объекта. Так возникло представление о расширяющейся Вселенной, согласно которому несколько миллиардов лет назад в результате так называемого большого взрыва (по образному определению причины расширения одним из критиков данной гипотезы Фреда Хойла, и автору этой примитивной модели устройства Вселенной американскому гражданину русского происхождения Георгию Гамову) в какие-то доли секунды в неизвестной точке не существовавшего еще пространства и неизвестно из чего образовалось все вещество Вселенной. Оценкой скорости расширения Вселенной является постоянная Хаббла, определяющая степень приращения скорости удаления космических объектов друг от друга с увеличением расстояния между ними.

В настоящей работе показано, что постоянная Хаббла, если придать ей обычную для физических величин размерность, работает не только за пределами нашей галактики, но и внутри последней. Однако никакого расширения Вселенной при этом не происходит.

Формула Хаббла для расширяющейся Вселенной проста:

где V – скорость удаления от наблюдателя того или иного космического объекта (равно как и наблюдателя от того же объекта) в км/с , r расстояние до объекта, измеряемое в мегапарсеках, – постоянная Хаббла, имеющая размерность (км /с )/Мпк . Принято, что мегапарсек равен 3,26 миллионам световых лет, а световой год – 3,1536 · 107 секундам и соответствует расстоянию, которое проходит свет за один год. Точное численное значение постоянной Хаббла, из-за отсутствия возможности непосредственного измерения расстояний между космическими объектами, трудно поддается расчету и постоянно уточняется. По последним данным, полученным с орбитального телескопа Хаббл, численное значение этого параметра составляет примерно 70 (км /с )/Мпк , хотя в разных источниках приводятся различные величины данного параметра – от 50 до 100 (км /с )/Мпк . В 2007 году планируется запуск космического телескопа нового поколения Планк, что позволит измерить параметр Хаббла, по замыслу авторов этого проекта, с точностью около ± 5 (км/с )/Мпк .

Физический смысл постоянной Хаббла можно интерпретировать по разному. Если мегапарсек в размерности этого параметра перевести в километры пройденного светом пути, как это практикуется во всех учебных пособиях и специальной литературе, то будет означать возраст Вселенной. Если же мегапарсек представить в секундах, что не противоречит заложенной в нем размерности исчисления времени, то получим ускорение:

с которым должна расширяться наша Вселенная. Последний вариант интерпретации физического смысла постоянной Хаббла почему-то замалчивался в литературе на протяжении многих лет – со времени появления данного понятия. Считалось, что расширение Вселенной происходит с постоянной скоростью. И только в 1998 году, когда были получены новые данные по некоторым наиболее отдаленным от нас квазарам, научная общественность признала, что Вселенная обладает определенными признаками ускоренного расширения пространства.

Допустим, что наша Вселенная действительно расширяется с некоторым ускорением. Тогда, зная скорость расширения пространства в настоящее время, можно оценить возраст Вселенной. Если учесть, что пространство обладает свойством электромагнитного поля, лучевая скорость распространения которого в настоящее время равна скорости света , то возраст Вселенной составит:

что идентично обратной величине параметра Хаббла, если мегапарсек времени пересчитать в километры пройденного светом пути при существующей его скорости. Такой, на первый взгляд, парадокс объясняется тем, что в последнем случае радиус видимой части Вселенной R , выраженный в абсолютных величинах, оказывается в два раза большим по сравнению с тем расчетом, который предполагает ускоренное прохождение светового сигнала:

а) при ускоренном прохождении светового сигнала R = ½g(H ) · t 2 = 6,5999 · 1022 км ;

б) при постоянстве скорости света R = V c · t = 13,1989 · 1022 км .

Таким образом, мы невольно приходим к выводу о том, что скорость света не является конечной скоростью распространения электромагнитных волн, а постоянно увеличивается с ускорением g (H ) = 6,80885 · 10–8 см/с 2. Так, с каждым столетием скорость света увеличивается на 2,147 м /с и через 9 лет она достигнет величины км/с , что может явиться веским аргументом для того, что бы "ЮНЕСКО" объявила этот год "годом Света".

Далее следует определиться с понятием "расширение Вселенной", поскольку в современной литературе нет однозначного определения последнему. С точки зрения гипотезы большого взрыва оно трактуется как раздвижение вещества или разбегание галактик (по образному описанию этого процесса космологами) с определенной скоростью на увеличивающейся в диаметре сфере пространства, в центре которой произошел большой взрыв. В итоге остается лишь догадываться, о какой скорости расширения Вселенной идет речь при каждом употреблении этого термина – о скорости раздвижения вещества на расширяющейся после взрыва сфере пространства, где якобы сосредоточено все вещество Вселенной, или о скорости приращения радиуса этой сферы от неизвестно где расположенной точки взрыва, которая рассматривается современной теорией как центр тяжести Вселенной?

Очевидно, что формула Хаббла работает в трехмерном пространстве, так как эффект от явления красного смещения одинаков во всех направлениях звездного неба. Однако интерпретация закона в современной литературе оказывается совсем другой – увеличение скорости раздвижения вещества пропорционально увеличению расстояния между объектами рассматривается лишь как результат расширения воображаемой сферы пространства, что ограничивает наши представления об окружающем мире двумерным образом. При этом никто и никогда не объяснил, что же должно находиться вне и внутри этой сферы, согласно данной теории, и каков радиус этой сферы. Самым неудачным следствием гипотезы большого взрыва является необходимость признания факта существования во Вселенной центра тяжести, от которого зависит наше будущее: если плотность Вселенной превышает некий критический предел (порядка 10–29 г/см 3), то расширение пространства должно смениться его сжатием, если же этот предел не достигнут, расширение будет происходить бесконечно долго. Налицо очевидный парадокс – закон Хаббла справедлив для любой произвольно выбранной точки пространства, а центром расширения этого пространства (по крайне мере той его части, которая доступна наблюдению) является одна-единственная и неизвестно где расположенная точка первоначального взрыва.

Мне больше импонирует представление о бесконечном строении Вселенной и относительно равномерном (или не очень) распределении вещества в пространстве, когда расширяться этому пространству некуда и незачем. Понятно, что в этой модели центр тяжести Вселенной отсутствует. В этой же модели закон Хаббла работает в любом направлении, если постоянную Хаббла понимать как ускорение скорости света или лучевой скорости расширения видимой части Вселенной, т. е. радиуса доступной для обозрения части Вселенной относительно произвольно выбранной точки пространства.

В результате рассчитанный выше возраст Вселенной знаменует собой не возникновение вещества из ничего с последующим раздвижением этого вещества на некой расширяющейся шарообразной сфере пространства относительно неизвестно где расположенной точки большого взрыва, а акт разделения первичной (доисторической и недоступной для созерцания) материи на вещество и пространство с одновременным приобретением веществом свойства гравитации, а пространством – свойства электромагнитного поля. Возраст Вселенной – это радиус того объема пространства, который доступен наблюдению из любой точки Вселенной. Но далее 14 миллиардов световых лет мы ничего не увидим: за этим горизонтом находится наше недосягаемое прошлое – первичная материя. Однако это вовсе не означает, что в настоящее время эта материя там присутствует. В настоящее время мир за этим горизонтом выглядит точно так же, как и вокруг нас, но мы узнаем об этом лишь через несколько миллиардов лет, когда расширится горизонт видимой части Вселенной и свет от ее окраин достигнет Земли.

Очевидно, что при ускоренном распространении электромагнитных волн в пространстве скорость отрыва световых сигналов от наблюдаемых нами космических объектов должна уменьшаться пропорционально степени удаленности этих объектов от Земли. Соответственно, время прохождения светового сигнала от наблюдаемого нами космического объекта до Земли определяется выражением:

определяя не скорость удаления объекта от наблюдателя, а разницу в скоростях распространения электромагнитных волн между современной эпохой и тем временем, когда измеряемое нами излучение покинуло тот или иной объект. При такой интерпретации закона постоянная Хаббла (с изначально принятой размерностью) становится показателем степени приращения скорости распространения электромагнитных волн в пространстве относительно того или иного космического объекта, расположенного далеко за пределами нашей галактики.

Далее обратимся к гравитационной постоянной G = 6,6726·10–8 см 3/ (г ·с 2). Соизмеримость ее численного значения с постоянной Хаббла (в форме ускорения скорости света) наводит на вполне определенные размышления. Если это совпадение неслучайно, то оба параметра имеют одну и ту же природу. Физический смысл постоянной Хаббла понятен. Что касается гравитационной постоянной, то ее принято рассматривать изначально как некий коэффициент пропорциональности в эмпирически установленном законе природы, и не более того. Попробуем придать этому коэффициенту конкретный физический смысл. В продолжение высказанного выше предположения о разделении несколько миллиардов лет назад первичной материи на вещество и пространство допустим, что гравитационная постоянная, учитывая ее размерность, соответствует, с одной стороны, ускорению скорости приращения удельного объема пространства в процессе эволюции Вселенной, а с другой, – ускорению скорости сокращения удельного объема находящегося в этом пространстве вещества . Понятно, что под "веществом" следует понимать не окружающие нас предметы или космические объекты как таковые, а те элементарные частицы, из которых они сложены, т. е. атомы. Последний аспект проблемы является предметом специальных исследований и здесь не рассматривается.

Исторически сложилось так, что закон Ньютона для отдельно взятого тела интерпретируется как закон, который определяет лишь поведение материальной точки за пределами этого тела – он определяет величину ускорения силы тяжести в данной точке в зависимости от массы тела m и расстояния R до его центра тяжести. В таком прочтении закона физический смысл гравитационной постоянной заключается в том, что она является ускорением скорости сокращения удельного объема пространства (внутри описанной через данную точку сферы) с учетом массы находящегося в этом объеме вещества. Величина ускорения g , зависящая от отношения m /R 2, в этом случае будет расти пропорционально уменьшению радиуса воображаемой сферы, поскольку масса системы остается неизменной.

В условиях пространства (вакуума) центра тяжести нет. Поэтому для прочтения закона Ньютона применительно к вакууму в качестве точки отсчета можно выбрать любую точку в пространстве и представить себе, что она является источником электромагнитного излучения. Расходящиеся от нее электромагнитные волны в виде воображаемых сфер будут увеличивать радиус видимого объема пространства. Очевидно, что для определения ускорения лучевой скорости расширения видимой части пространства, необходимо знать численное значение отношения массы к квадрату радиуса этого объема, которое должно оставаться постоянным на протяжении всего процесса, т. е. численное значение отношения m /R 2 в формуле Ньютона. Понятно, что только при m /R 2 = const ускорение лучевой скорости приращения объема пространства на воображаемой поверхности его сферы всегда будет оставаться постоянным. При этом, чем дальше уйдет световой сигнал от точки его излучения, тем больше увеличится удельный объем пространства (от исходной величины) внутри воображаемой сферы. Таким образом, ускорение скорости света определяется только свойством пространства – константой m /R 2. Параметр Хаббла дает следующую величину этой константы:

Теперь возникает заманчивое предложение – почему бы ни допустить, что у пространства нашей Вселенной m /R 2 = 1 г/см 2, если точное значение параметра Хаббла неизвестно? В этом случае ускорение скорости света g = 6,6726·10–8 см/с 2, а численное значение постоянной Хаббла H 0 = 68,599 (км/с )/Мпк , что соизмеримо с последними оценками этого параметра. Соответственно, возраст Вселенной составитлет.

Если "расширение" Вселенной реализуется путем увеличения радиуса видимой ее части и удельного объема пространства, что тождественно уменьшению его плотности, то никакого раздвижения вещества в этом пространстве не происходит, и нет никакой необходимости привлекать гипотезу о некогда произошедшем взрыве – его просто не было. В противном случае мы бы не наблюдали такое распространенное в далеком космосе явление, как столкновение (или слияние) галактик. Кроме того, участие вещества в процессе расширения (при условии возникновения этого расширения в результате первоначального взрыва) предполагает признание факта удаления от нас галактик, расположенных на окраинах видимой части Вселенной, со скоростью света, что противоречит здравому смыслу. По-моему, следует признать, что наблюдаемая нами Вселенная, включая вещество и пространство, вовсе не расширяется – увеличивается лишь удельный объем пространства и радиус видимой части Вселенной, а плотность пространства – уменьшается. При этом плотность энергии вакуума (пространства) остается постоянной и не зависит ни от возраста Вселенной, ни от скорости света:

В настоящее время радиус видимой части Вселенной из любой ее точки составляет (при m /R 2 = 1 г /см 2):

или 4370,216 Мпк в новом его исчислении, т. е. с учетом ускорения скорости света, а удельный объем вакуума:

Соответственно, плотность вакуума будет равна обратной величине удельного объема – а плотность энергии вакуума – В принципе, если появится когда-нибудь возможность непосредственного определения плотности космического вакуума инструментальным путем, то станет возможным точное определение постоянной Хаббла и константы m /R 2 для пространства нашей Вселенной.

Если наши предположения о распространении света с некоторым ускорением соответствуют действительности, то реальные параметры светового года, как единицы измерения расстояний (в обычных для физических величин размерностях) до наблюдаемых нами космических объектов, будут уменьшаться пропорционально степени отдаленности последних от наблюдателя. Поэтому рассчитанный выше радиус видимой части Вселенной оказывается в два раза меньше, чем при условии, когда скорость света является постоянной величиной. В результате следует признать, что мы наблюдаем гораздо меньший объем окружающего нас пространства, чем это считалось ранее. Более того, нам пока не известна величина исходного удельного объема пространства, с которого начался процесс его увеличения и, соответственно, – первоначальная скорость распространения электромагнитных волн. Следовательно, обозреваемая нами Вселенная оказывается еще более ограниченной в пространстве. Может быть, поэтому наши приборы способны регистрировать находящиеся на окраинах видимой части Вселенной объекты?

Теперь вернемся к явлению красного смещения спектральных линий всех элементов в спектрах далеких звезд, которое было воспринято Эдвином Хабблом как результат расширения Вселенной.

Действительно, в пределах нашей галактики по величине и направлению смещения спектральных линий отдельных элементов в спектрах различных объектов удается определять их относительную скорость движения и моделировать структуру всей галактики в целом. Более того, эффект Допплера позволяет достаточно надежно оценивать скорости вращения Солнца, ближайших к нам звезд и целых галактик. Однако на очень больших расстояниях в смещении спектральных линий доминирует вторая составляющая данного эффекта – увеличение длин волн от далеких источников их излучения по мере приближения этого излучения к Земле в связи с общим ускорением скорости света. Соответственно, следует признать, что частоты доходящих до нас электромагнитных волн, которые идентифицируются по лабораторным, т. е. современным, аналогам, – меньше частот последних и эта разница тем больше, чем дальше от нас находится источник излучения. Иными словами, частоты колебаний всех элементов в далеком прошлом были меньше частот колебаний тех же элементов в настоящее время. Следовательно, частота электромагнитного излучения, как и скорость его распространения, является функцией времени, равно как и возраста пространства.

Соотношения между частотами и скоростями распространения электромагнитных волн в разных исторических эпохах существования Вселенной в зависимости от абсолютных (∆λ ) или относительных (z = ∆λ /λ ) величин красного смещения могут быть получены исходя из следующих соображений.

Электромагнитное излучение от далекого космического объекта с частотой

У современного аналога источника излучения частота колебаний составляет:

а при объединении выражений (5) и (6) получим частоту этого излучения:

позволяющее рассчитывать расстояние r Мпк ) до наблюдаемого нами объекта по величине красного смещения ∆λ или z :

Например, наиболее отдаленные от нас квазары с красным смещением z = 6,56 должны находиться на расстоянии 3792,146 Мпк от Земли, а стартовая скорость отрыва света от них должна составлять 39655,047 км/с .

В свете изложенного, реликтовое излучение, интенсивность которого одинакова во всех направлениях звездного неба и факт обнаружения которого считается главным аргументом в пользу гипотезы о некогда произошедшем большом взрыве, можно рассматривать как результирующий эффект от излучения газообразной оболочки примитивного вещества, по-видимому, того же водорода , примыкающей к краю видимой части Вселенной, где скорость света составляет порядка 97 км/с , а возраст Вселенной – около 4,6 миллионов лет. Эти оценки соответствуют 2 мм длин волн фонового излучения при условии, что источником данного излучения является водород. Очевидно, что со временем длина волн фонового излучения будет расти пропорционально увеличению скорости света и радиуса видимой части Вселенной. Таким образом, "шелест" реликтового излучения, по очень удачному определению этого явления американским астрономом Стивеном Мараном, отражает завершающую стадию формирования вещества на окраинах расширяющегося объема видимой части Вселенной, где это вещество по неизвестным нам причинам начинает взаимодействовать с пространством, и результат этого взаимодействия мы обнаруживаем в настоящее время.

В заключение несколько слов о перспективах проекта Планк в отношении более точного определения значения постоянной Хаббла инструментальными методами . Если эффект Допплера обусловлен двумя причинами – относительной скоростью движения и предполагаемым нами ускоренным распространением электромагнитных волн во времени, то эти надежды, по-видимому, не могут быть реализованы в полной мере, поскольку неизвестны относительные скорости и направления векторов движения тех источников излучения, которые обычно используются в подобных экспериментах (в астрофизике их называют индикаторами расстояний).

Так, при небольших расстояниях между источником излучения и наблюдателем, когда V 0 ≈ V c, величина смещения спектральной линии ∆λ 1 от движущегося объекта определяется скоростью его движения Vоб :

При значительных расстояниях к этой величине добавляется вторая составляющая в соответствии с (7):

которая определяется степенью отдаленности этого объекта от наблюдателя. Очевидно, что чем дальше от наблюдателя будет находиться источник излучения, тем более весомым будет вклад ∆λ 2 в итоговое значение величины красного смещения спектральных линий:

Отсюда следует, что скорость удаления наблюдаемого объекта, которая рассчитывается обычно по всей величине красного смещения, имеет более сложную зависимость:

и определить ее можно лишь, зная расстояние до этого объекта.

Например, при неподвижном нахождении, относительно наблюдателя, источника излучения, красное смещение зеленой линии водорода (λ = 4861 Å = 4,861·10–5 см ) на 100 Å означает, что стартовая скорость отрыва света от него составляет 0,97984Vc , а время прохождения сигнала – 88,091 Мпк . Если же мы уверены, что этот объект расположен ближе, скажем, на расстоянии 80 Мпк , то 90,64 Å в величине красного смещения той же линии водорода должно приходиться на время прохождения светового сигнала до Земли, а 9,36 Å – на удаление от нас наблюдаемого объекта со скоростью 565,62 км/с . Если тот же объект расположен дальше, например, на расстоянии 90 Мпк , то при соответствующей этому расстоянию скорости света в 0,9794Vc , красное смещение должно быть 102,21 Å. Следовательно, данный объект приближается к нам со скоростью 133,49 км/с , что проявляется в уменьшении ожидаемой величины красного смещения зеленой линии водорода на 2,21 Å.

Что касается размера исходного удельного объема пространства (равно как и плотности вакуума), с которого начался процесс его расширения, и каков механизм формирования вещества, то ответы на эти вопросы следует искать, по-видимому, в гравитационных линзах и наиболее удаленных от нас квазарах, – с максимальными величинами красного смещения. Не исключено, что исходный удельный объем пространства связан с реликтовым излучением, длина волн которого, если рассматривать ее как величину красного смещения характеристических линий водорода, определяет первоначальную скорость света и, соответственно, – исходную плотность вакуума. С этих позиций определенный интерес представляет установленное недавно явление анизотропии реликтового излучения, свидетельствующее, по-видимому, о существовании в "доисторическую" эпоху Вселенной бесконечного количества доменов, расширение удельного объема пространства в которых начиналось с различными скоростями распространения электромагнитных волн.

Вполне очевидно, что изложенные выше представления о природе окружающего нас мира являются гипотезой, основанной на предположении об ускоренном характере распространения электромагнитного излучения в пространстве. Однако эти представления снимают известные трудности, связанные с интерпретацией величин красного смещения спектральных линий отдельных элементов в спектрах очень далеких от нас объектов, превышающих длины волн их современных аналогов, и не требуют привлечения для объяснения природы этого явления довольно громоздкого математического аппарата, в котором теряется не только физический, но и здравый смысл. По этим же представлениям мы избавляемся от непонятного для человеческого мышления факта существования в плоском пространстве и, что самое главное, – от не очень приятного ощущения, что наша Вселенная подобна тонкой оболочке воздушного шара , который постоянно расширяется по мере снижения давления в окружающем его пространстве, а мы все летим неизвестно куда с огромной скоростью от некой точки первоначального взрыва.

«В 1744 году швейцарский астроном де Шезо и независимо от него в 1826 году Ольберс сформулировали следующий парадокс, - пишет в своей книге Т. Редже, - который привел к кризису тогдашних наивных космологических моделей. Представим себе, что пространство вокруг Земли бесконечно, вечно и неизменно и что оно равномерно заполнено звездами, причем их плотность в среднем постоянна. С помощью несложных вычислений Шезо и Ольберс показали, что полное количество света, посылаемое на Землю звездами, должно быть бесконечным, из-за чего ночное небо будет не черным, а, мягко говоря, залито светом. Чтобы избавиться от своего парадокса, они предположили существование в космосе обширных блуждающих непрозрачных туманностей, заслоняющих наиболее отдаленные звезды. На самом деле так выйти из положения нельзя: поглощав свет от звезд, туманности поневоле нагревались бы и сами излучали свет так же, как и звезды.

Итак, если справедлив космологический принцип, то мы не можем принять идею Аристотеля о вечной и неизменяющейся Вселенной. Здесь, как и в случае относительности, природа, похоже, предпочитает в своем развитии симметрию, а не мнимое Аристотелево совершенство».

Однако самый серьезный удар незыблемости Вселенной был нанесен не теорией эволюции звезд, а результатами измерений скоростей удаления галактик, полученными великим американским астрономом Эдвином Хабблом.

Хаббл (1889–1953) родился в небольшом городке Маршфилд в штате Миссури в семье страхового агента Джона Пауэла Хаббла и его супруги Виржинии Ли Джеймс. Астрономией Эдвин заинтересовался рано, вероятно, под влиянием своего деда по матери, построившего себе небольшой телескоп.

В 1906 году Эдвин окончил школу. Шестнадцатилетним юношей Хаббл поступил в Чикагский университет, входивший тогда в первую десятку лучших учебных заведений США. Там работал астроном Ф.Р. Мультон, автор известной теории происхождения Солнечной системы. Он оказал большое влияние на дальнейший выбор Хаббла.

После окончания университета Хабблу удалось получить стипендию Родса и на три года уехать в Англию для продолжения образования. Однако вместо естественных наук ему пришлось изучать в Кембридже юриспруденцию.

Летом 1913 года Эдвин возвратился на родину, но юристом так и не стал. Хаббл стремился к науке и вернулся в Чикагский университет, где на Йеркской обсерватории под руководством профессора Фроста подготовил диссертацию на степень доктора философии. Его работа представляла собой статистическое исследование слабых спиральных туманностей в нескольких участках неба и особенной оригинальностью не отличалась. Но уже тогда Хаббл разделял мнение о том, что «спирали - это звездные системы на расстояниях, часто измеряемых миллионами световых лет».



В это время в астрономии приближалось большое событие - обсерватория Маунт-Вилсон, которую возглавлял замечательный организатор науки Д.Э. Хейл, готовилась к вводу в строй крупнейшего телескопа - стодюймового рефлектора (250-сантиметрового - Прим. авт.). Приглашение работать в обсерватории среди других получил и Хаббл. Однако весной 1917 года, когда он заканчивал свою диссертацию, США вступили в Первую мировую войну. Молодой ученый отклонил приглашение и записался добровольцем в армию. В составе Американского экспедиционного корпуса майор Хаббл попал в Европу осенью 1918 года, незадолго до окончания войны, и в боевых действиях принять участие не успел. Летом 1919 года Хаббл демобилизовался и поспешил в Пасадену, чтобы принять приглашение Хейла.

На обсерватории Хаббл начал изучать туманности, сосредоточившись сначала на объектах, видимых в полосе Млечного Пути.

В хрестоматии «Книга первоисточников по астрономии и астрофизике, 1900–1975» К. Ланга и О. Гингерича (США), где воспроизведены самые выдающиеся исследования за три четверти двадцатого столетия, помещены три работы Хаббла, и первая из них - работа по классификации внегалактических туманностей. Две другие относятся к установлению природы этих туманностей и открытию закона красного смещения.

В 1923 году Хаббл приступил к наблюдениям туманности в созвездии Андромеды на шестидесяти и стодюймовых рефлекторах. Ученый сделал вывод, что большая Туманность Андромеды действительно другая звездная система. Такие же результаты Хаббл получил и для туманности МОС 6822 и туманности в Треугольнике.

Хотя об открытии Хаббла вскоре стало известно ряду астрономов, официальное сообщение последовало лишь 1 января 1925 года, когда на съезде Американского астрономического общества Г. Рессел зачитал доклад Хаббла. Известный астроном Д. Стеббинс писал, что доклад Хаббла «во сто крат расширил объем материального мира и с определенностью решил долгий спор о природе спиралей, доказав, что это гигантские совокупности звезд, почти сравнимые по размерам с нашей собственной Галактикой». Теперь Вселенная предстала перед астрономами пространством, заполненным звездными островами - галактиками.

Уже одно установление истинной природы туманностей определило место Хаббла в истории астрономии. Но на его долю выпало и еще более выдающееся достижение - открытие закона красного смещения.

Спектральные исследования спиральных и эллиптических «туманностей» были начаты в 1912 году на основе таких соображений1 если они действительно расположены за пределами нашей Галактики, то они не участвуют в ее вращении и поэтому их лучевые скорости будут свидетельствовать о движении Солнца. Ожидалось, что эти скорости будут порядка 200–300 километров в секунду, т. е. будут соответствовать скорости движения Солнца вокруг центра Галактики.

Между тем, за несколькими исключениями, лучевые скорости галактик оказались гораздо больше: они измерялись тысячами и десятками тысяч километров в секунду.

В середине января 1929 года в «Труды» Национальной академии наук США Хаббл представил небольшую заметку под названием «О связи между расстоянием и лучевой скоростью внегалактических туманностей». В то время Хаббл уже имел возможность сопоставить скорость движения галактики с расстоянием до нее для 36 объектов. Оказалось, что эти две величины связаны условием прямой пропорциональности: скорость равна расстоянию, умноженному на постоянную Хаббла.

Это выражение получило название закона Хаббла. Численное значение постоянной Хаббла ученый в 1929 году определил в 500 км/(с х Мпк). Однако он ошибся в установлении расстояний до галактик. После многократных исправлений и уточнений этих расстояний численное значение постоянной Хаббла сейчас принимается равным 50 км/(с х Мпк).

На обсерватории Маунт-Вилсон началось определение лучевых скоростей все более удаленных галактик. К 1936 году М. Хьюмасон публикует данные для ста туманностей. Рекордную скорость в 42 000 километров в секунду удалось зарегистрировать у члена далекого скопления галактик в Большой Медведице. Но это уже было пределом возможностей стодюймового телескопа. Нужны были более мощные инструменты.

«Можно подойти к вопросу о хаббловском расширении космоса, используя более привычные, интуитивные образы, - считает Т.Редже. - Например, представим себе солдат, выстроенных на какой-нибудь площади с интервалом 1 метр. Пусть затем подается команда раздвинуть за одну минуту ряды так, чтобы этот интервал увеличился до 2 метров. Каким бы образом команда ни выполнялась, относительная скорость двух рядом стоявших солдат будет равна 1 м/мин, а относительная скорость двух солдат, стоявших друг от друга на расстоянии 100 метров, будет 100 м/ мин, если учесть, что расстояние между ними увеличится от 100 до 200 метров. Таким образом, скорость взаимного удаления пропорциональна расстоянию. Отметим, что после расширения рядов остается справедливым космологический принцип: „галактики-солдаты“ по-прежнему распределены равномерно, и сохраняются те же пропорции между различными взаимными расстояниями.

Единственный недостаток нашего сравнения заключается в том, что на практике один из солдат все время стоит неподвижно в центре площади, в то время как остальные разбегаются со скоростями тем большими, чем больше расстояния от них до центра. В космосе же нет верстовых столбов, относительно которых можно было бы провести абсолютные измерения скорости; такой возможности мы лишены теорией относительности: каждый может сравнивать свое движение только с движением рядом идущих, и при этом ему будет казаться, что они от него убегают.

Мы видим, таким образом, что закон Хаббла обеспечивает неизменность космологического принципа во все времена, и это утверждает нас в мнении, что как закон, так и сам принцип действительно справедливы.

Другим примером интуитивного образа может служить взрыв бомбы; в этом случае, чем быстрее летит осколок, тем дальше он улетит. Спустя мгновение после самого взрыва мы видим, что осколки распределены в соответствии с законом Хаббла, т е. их скорости пропорциональны расстояниям до них. Здесь, однако, нарушается космологический принцип, поскольку если мы отойдем достаточно далеко от места взрыва, то никаких осколков не увидим. Этим образом подсказан самый знаменитый в современной космологии термин „большой взрыв“. Согласно этим представлениям, около 20 млрд. лет тому назад все вещество Вселенной было собрано в одной точке, из которой началось стремительное расширение Вселенной до современных размеров».

Закон Хаббла практически сразу же был признан в науке. Значение открытия Хаббла высоко оценил Эйнштейн. В январе 1931 года он писал: «Новые наблюдения Хаббла и Хьюмасона относительно красного смещения… делают вероятным предположение, что общая структура Вселенной не стационарная».

Открытие Хаббла окончательно разрушило существовавшее со времен Аристотеля представление о статичной, незыблемой Вселенной. В настоящее время закон Хаббла используется для определения расстояний до далеких галактик и квазаров.

КЛАССИФИКАЦИЯ ГАЛАКТИК

История «открытия» мира галактик весьма поучительна. Больше двухсот лет назад Гершель построил первую модель Галактики, преуменьшив ее размеры в пятнадцать раз. Изучая многочисленные туманности, разнообразие форм которых он первый и обнаружил, Гершель пришел к выводу, что некоторые из них являются далекими звездными системами «типа нашей звездной системы». Он писал: «Я не считаю необходимым повторять, что небеса состоят из участков, у которых солнца собраны в системы». И еще: «…эти туманности также могут быть названы млечными путями - с малой буквы в отличие от нашей системы».

Однако, в конце концов, сам Гершель занял в отношении природы туманностей другую позицию. И это было не случайностью. Ведь ему удалось доказать, что большинство открытых и наблюдавшихся им туманностей состоят не из звезд, а из газа. Он пришел к весьма пессимистическому выводу: «Все, что за пределами нашей собственной системы, покрыто мраком неизвестности».

Английский астроном Агнесса Кларк писала в книге «Система звезд» в 1890 году: «Можно с уверенностью сказать, что ни один компетентный ученый, располагающий всеми имеющимися доказательствами, не станет придерживаться мнения, что хотя бы одна туманность является звездной системой, сравнимой по размерам с Млечным Путем. Практически установлено, что все объекты, наблюдаемые на небе (как звезды, так и туманности), принадлежат к одному огромному агрегату»…

Причина такой точки зрения была в том, что долгое время астрономы не умели определять расстояния до этих звездных систем. Так, из проведенных в 1907 году измерений будто бы следовало, что расстояние до «Туманности Андромеды» не превышает 19 световых лет. Четыре года спустя астрономы пришли к выводу, что это расстояние составляет около 1600 световых лет. И в том, и в другом случае создавалось впечатление, что упомянутая туманность и в самом деле находится в нашей Галактике.

В двадцатые годы прошлого века между астрономами Шепли и Куртисом разгорелся ожесточенный спор о природе Галактики и других объектов, видимых с помощью телескопов. В числе этих объектов находится знаменитая туманность Андромеды (М31), которая видна невооруженным глазом всего лишь как звезда четвертой величины, но разворачивается в величественную спираль, если разглядывать ее в большой телескоп. К этому времени в некоторых из этих туманностей были зарегистрированы вспышки новых звезд. Кертис предположил, что в максимуме блеска упомянутые звезды излучают столько же энергии, что и новые звезды нашей Галактики. Так, он установил, что расстояние до Туманности Андромеды равно 500 000 световых лет. Это и дало Кертису основание утверждать, что спиральные туманности - это далекие звездные вселенные, подобные Млечному Пути. С таким выводом Шепли не соглашался, и его рассуждения также были вполне логичными.

Согласно Шепли, вся Вселенная состоит из одной нашей Галактики, а спиральные туманности типа М31 представляют собой более мелкие объекты, рассыпанные внутри этой Галктики, как изюм в куличе.

Предположим, говорил он, что Туманность Андромеды имеет такие же размеры, как и наша Галактика (300 000 световых лет по его оценке). Тогда, зная ее угловые размеры, находим, что расстояние до данной туманности составляет 10 миллионов световых лет! Но тогда непонятно, почему наблюдавшиеся в Туманности Андромеды новые звезды имеют большую яркость, чем в нашей Галактике. Если же яркость новых в этой «туманности» и в нашей Галактике одинакова, то отсюда следует, что Туманность Андромеды в 20 раз меньше нашей Галактики.

Куртис, напротив, считал, что М31 представляет собой самостоятельную галактику-остров, не уступающую в достоинстве нашей Галактике и отдаленную от нее на несколько сотен тысяч световых лет. Создание больших телескопов и прогресс астрофизики привели к признанию правоты Куртиса. Измерения, проделанные Шепли, оказались ошибочными. Он очень сильно недооценил расстояние до М31. Куртис, впрочем, также ошибался: теперь известно, что расстояние до М31 - более двух миллионов световых лет.

Природу спиральных туманностей окончательно удалось установить Эдвину Хабблу, который в конце 1923 года обнаружил в Туманности Андромеды первую, а вскоре еще несколько цефеид. Оценив их видимые величины и периоды, Хаббл нашел, что расстояние до этой «туманности» составляет 900 000 световых лет. Так окончательно была установлена принадлежность спиральных «туманностей» к миру звездных систем типа нашей Галактики.

Если же говорить о расстояниях до этих объектов, то их еще предстояло уточнять и пересматривать. Так, на самом деле расстояние до галактики М 31 в Андромеде равно 2,3 миллиона световых лет.

Мир галактик оказался удивительно огромным. Но еще большее удивление вызывает многообразие его форм.

Первую и довольно удачную классификацию галактик по их внешнему виду предпринял уже Хаббл в 1925 году. Он предложил относить галактики к одному из следующих трех типов: 1) эллиптические (обозначаемые буквой Е), 2) спиральные (S) и 3) неправильные (1 г).

К эллиптическим были отнесены те галактики, которые имеют вид правильных кругов или эллипсов и яркость которых плавно уменьшается от центра к периферии. Эту группу подразделяют на восемь подтипов от ЕО до Е7 по мере увеличения видимого сжатия галактики. Линзовидные галактики SO похожи на сильно сплюснутые эллиптические системы, однако имеют четко выделенное центральное звездообразное ядро.

Спиральные галактики, в зависимости от степени развития спиралей, подразделяются на подклассы Sa, Sb и Sc. У галактик типа Sa основной составной частью является ядро, тогда как спирали выражены еще слабо. Переход к последующему подклассу - констатация факта все большего развития спиралей и уменьшения видимых размеров ядра.

Параллельно нормальным спиральным галактикам существуют еще так называемые пересеченные спиральные системы (SB). У галактик этого типа очень яркое центральное ядро пересекается по диаметру поперечной полосой. Из концов этой перемычки и начинаются спиральные ветви, причем в зависимости от степени развития спиралей эти галактики делятся на подтипы SBa, SBb и SBc.

К неправильным галактикам (Ir) отнесены объекты, у которых отсутствует четко выраженное ядро и не обнаружена вращательная симметрия. Их типичными представителями являются Магеллановы Облака.

«Я использовал ее 30 лет, - писал впоследствии известный астроном Вальтер Бааде, - и хотя упорно искал объекты, которые нельзя было бы действительно уложить в хаббловскую систему, их число оказалось столь ничтожным, что я могу пересчитать их по пальцам». Классификация Хаббла продолжает служить науке, и все последующие модификации существа ее не затронули.

Некоторое время полагали, что эта классификация имеет эволюционный смысл, т. е. что галактики «передвигаются» вдоль «камертонной диаграммы» Хаббла, последовательно меняя свою форму. Сейчас этот взгляд считается ошибочным.

Среди нескольких тысяч ярчайших галактик насчитывается 17 процентов эллиптических, 80 процентов спиральных и около 3 процентов неправильных.

В 1957 году советский астроном Б.А. Воронцов-Вельяминов открыл существование «взаимодействующих галактик» - галактик, связанных «перемычками», «хвостами», а также «гамма-форм», т. е. галактик, у которых одна спираль «закручивается», тогда как другая «раскручивается». Позже были открыты компактные галактики, размеры которых составляют всего около 3000 световых лет, и изолированные в пространстве звездные системы с поперечником всего 200 световых лет. По своему внешнему виду они практически не отличаются от звезд нашей Галактики.

Новый общий каталог (НОС) содержит перечень около десяти тысяч галактик вместе с их важнейшими характеристиками (светимость, форма, отдаленность и т. д.) - и это лишь малая толика из десяти миллиардов галактик, в принципе различимых с Земли. Сказочный гигант, способный охватить взглядом сотню-другую миллионов световых лет, разглядывая Вселенную, увидел бы, что она заполнена космическим туманом, капельками которого являются галактики. Временами встречаются скопления, состоящие из тысяч галактик, собранных вместе. Одно такое гигантское скопление находится в созвездии Девы.