Бинарный код. Перевод текста в цифровой код

Можно с помощью стандартных программных средств операционной системы Microsoft Windows. Для этого откройте меню «Пуск» на вашем компьютере, в появившемся меню кликните «Все программы», выберите папку «Стандартные» и найдите в ней приложение «Калькулятор». В верхнем меню калькулятора выберите пункт «Вид», а затем «Программист». Форма калькулятора преобразуется.

Теперь введите число для перевода. В специальном окне под полем ввода вы увидите результат перевода числа код. Так, например, после ввода числа 216 вы получите результат 1101 1000.

Если у вас под рукой нет ни компьютера, ни смартфона, вы можете самостоятельно попробовать число, записанное арабскими цифрами, в двоичный код. Для этого необходимо постоянно делить число на 2 до того момента, пока не останется последнего остатка или результат не достигнет нуля. Выглядит это так (на примере числа 19):

19: 2 = 9 – остаток 1
9: 2 = 4 – остаток 1
4: 2 = 2 – остаток 0
2: 2 = 1 – остаток 0
1: 2 = 0 – достигнут 1 (делимое меньше делителя)

Выпишите остаток в обратную сторону – с самого последнего к самому первому. Вы получите результат 10011 – это и есть число 19 в .

Для перевода дробного десятичного числа в систему вначале необходимо перевести целую часть дробного числа в двоичную систему счисления, как это было показано в примере выше. Затем нужно дробную часть привычного числа умножить на основание двоичной . В результате произведения необходимо выделить целую часть – она принимает значение первого разряда числа системе после запятой. Финал алгоритма наступает, когда дробная часть произведения обращается в ноль, или если достигнута требуемая точность вычислений.

Источники:

  • Алгоритмы перевода на Wikipedia

Кроме привычной десятичной системы счисления в математике есть множество других способов представления чисел, в том числе в виде . Для этого используются всего два символа, 0 и 1, что делает двоичную систему удобной при использовании в работе различных цифровых устройств.

Инструкция

Системы в предназначены для символического отображения чисел. В обычной , в основном, используется десятичная система, которая очень удобна для расчетов, в том числе в уме. В мире цифровых устройств, в том числе компьютерном, который стал теперь для многих вторым домом, наибольшее распространение имеет , далее по мере убывания популярности идут восьмеричная и шестнадцатеричная.

Эти четыре системы имеют одно общее качество – они позиционные. Это значит, что значение каждого знака в итоговом числе зависит от того, в какой позиции он стоит. Отсюда вытекает понятие разрядности, в двоичном виде единицей разрядности является число 2, в – 10 и т.д.

Существуют алгоритмы перевода чисел из одной системы в другую. Эти методы просты и не требуют больших знаний, однако для развития этих навыков требуется некоторая сноровка, которая достигается практикой.

Перевод числа из другой системы счисления в осуществляется двумя возможными способами: итерационным делением на 2 или с помощью записи каждого отдельного знака числа в виде четверки символов, которые являются табличными величинами, однако могут быть найдены и самостоятельно ввиду своей простоты.

Используйте первый способ для приведения в двоичный вид десятичного числа. Это тем более удобно, что десятичными числами легче оперировать в уме.

Например, переведите число 39 в двоичный видРазделите 39 на 2 - получится 19 и 1 в остатке. Сделайте еще несколько итераций деления на 2, пока в конечном итоге не будет равен нулю, а промежуточные остатки тем временем записывайте в строку справа налево. Итоговый набор единиц и нулей и будет вашим числом в двоичном виде:39/2 = 19 → 1;19/2 = 9 → 1;9/2 = 4 → 1;4/2 = 2 → 0;2/2 = 1 → 0;1/2 = 0 → 1.Итак, получилось двоичное число 111001.

Чтобы перевести в двоичный вид число из по основаниям 16 и 8, найдите или сделайте сами таблицы соответствующих обозначений каждого цифрового и символьного элемента этих систем. А именно: 0 0000, 1 0001, 2 0010, 3 0011, 4 0100, 5 0101, 6 0110, 7 0111, 8 1000, 9 1001, A 1010, B 1011, C 1100, D 1101, E 1110, F 1111.

Каждый знак исходного числа запишите в соответствии с данными этой таблицы. Примеры:Восьмеричное число 37 = = 00110111 в двоичном виде;Шестнадцатеричное число 5FEB12 = = 010111111110101100010010 системе.

Видео по теме

Некоторые нецелые числа могут быть записаны в десятичном виде. В этом случае после запятой, отделяющей целую часть числа , стоит некоторое количество цифр, характеризующих нецелую часть числа . В разных случаях удобно использовать либо десятичные числа , либо дробные. Десятичные числа можно переводить в дробные.

Вам понадобится

  • умение сокращать дроби

Инструкция

Если знаменатель равен 10, 100 или, в случае, 10^n, где n - натуральное число, то дробь может быть записана в виде . Количество знаков после запятой определяет знаменатель дроби. Он равен 10^n, где n - количество знаков. Значит, к примеру, 0,3 можно записать как 3/10, 0,19 как 19/100 и.т.д.

Если в конце десятичной дроби стоит один или более нулей, то эти нули можно отбросить и переводить число с оставшимся количеством знаков после запятой в дробное. Пример: 1,7300 = 1,73 = 173/100.

Видео по теме

Источники:

  • Десятичные дроби
  • как перевести дробное

Основная часть программных продуктов для Android написана на языке программирования (ЯП) Java. Разработчики системы также предлагают программистам фреймворки для проектирования приложений на C/C++, Python и Java Script через библиотеку jQuery и PhoneGap.

Motodev Studio for Android, созданный на основе Eclipse и позволяющий программировать непосредственно на основе Google SDK.

Для написания некоторых программ и участков кода, выполнение которых требует максимальной , могут быть использованы библиотеки C/C++. Использование этих ЯП возможно через специальный пакет для разработчиков Android Native Development Kit, ориентированный специально для создания приложений с использованием C++.

Пакет Embarcadero RAD Studio XE5 также позволяет писать нативные приложения для Android. При этом для тестирования программы достаточно одного Android-устройства или установленного эмулятора. Разработчику также предлагается возможность писать на C/C++ низкоуровневые модули путем использования некоторых стандартных библиотек Linux и разработанной для Android библиотеки Bionic.

Кроме C/C++, программисты имеют возможность использовать C#, средства которого пригодятся при написании нативных программ для платформы. Работа на C# с Android возможно через интерфейс Mono или Monotouch. Тем не менее первоначальная лицензия на C# обойдется программисту в $400, что актуально только при написании крупных программных продуктов.

PhoneGap

PhoneGap дает возможность разрабатывать приложения с использованием таких языков, как HTML, JavaScript (jQuery) и CSS. При этом программы, создаваемые на данной платформе, подходят для других операционных и могут быть модифицированы под другие девайсы без дополнительного внесения изменений в программный код. С использованием PhoneGap разработчики программ на Android могут применять средства JavaScript для написания кода и HTML с CSS в качестве средств для создания разметки.

Решение SL4A дает возможность использовать в написании и скриптовые языки. При помощи среды планируется введение таких ЯП, как Python, Perl, Lua, BeanShell, JRuby и т.п. Тем не менее количество разработчиков, которые на сегодняшний день используют SL4A для своих программ, невелико, а проект до сих пор находится в стадии -тестирования.

Источники:

  • PhoneGap

08. 06.2018

Блог Дмитрия Вассиярова.

Двоичный код — где и как применяется?

Сегодня я по-особому рад своей встрече с вами, дорогие мои читатели, ведь я чувствую себя учителем, который на самом первом уроке начинает знакомить класс с буквами и цифрами. А поскольку мы живем в мире цифровых технологий, то я расскажу вам, что такое двоичный код, являющийся их основой.

Начнем с терминологии и выясним, что означит двоичный. Для пояснения вернемся к привычному нам исчислению, которое называется «десятичным». То есть, мы используем 10 знаков-цифр, которые дают возможность удобно оперировать различными числами и вести соответствующую запись. Следуя этой логике, двоичная система предусматривает использование только двух знаков. В нашем случае, это всего лишь «0» (ноль) и «1» единица. И здесь я хочу вас предупредить, что гипотетически на их месте могли бы быть и другие условные обозначения, но именно такие значения, обозначающие отсутствие (0, пусто) и наличие сигнала (1 или «палочка»), помогут нам в дальнейшем уяснить структуру двоичного кода.

Зачем нужен двоичный код?

До появления ЭВМ использовались различные автоматические системы, принцип работы которых основан на получении сигнала. Срабатывает датчик, цепь замыкается и включается определенное устройство. Нет тока в сигнальной цепи – нет и срабатывания. Именно электронные устройства позволили добиться прогресса в обработке информации, представленной наличием или отсутствием напряжения в цепи.

Дальнейшее их усложнение привело к появлению первых процессоров, которые так же выполняли свою работу, обрабатывая уже сигнал, состоящий из импульсов, чередующихся определенным образом. Мы сейчас не будем вникать в программные подробности, но для нас важно следующее: электронные устройства оказались способными различать заданную последовательность поступающих сигналов. Конечно, можно и так описать условную комбинацию: «есть сигнал»; «нет сигнала»; «есть сигнал»; «есть сигнал». Даже можно упростить запись: «есть»; «нет»; «есть»; «есть».

Но намного проще обозначить наличие сигнала единицей «1», а его отсутствие – нулем «0». Тогда мы вместо всего этого сможем использовать простой и лаконичный двоичный код: 1011.

Безусловно, процессорная техника шагнула далеко вперед и сейчас чипы способны воспринимать не просто последовательность сигналов, а целые программы, записанные определенными командами, состоящими из отдельных символов. Но для их записи используется все тот же двоичный код, состоящий из нулей и единиц, соответствующий наличию или отсутствию сигнала. Есть он, или его нет – без разницы. Для чипа любой из этих вариантов – это единичная частичка информации, которая получила название «бит» (bit — официальная единица измерения).

Условно, символ можно закодировать последовательностью из нескольких знаков. Двумя сигналами (или их отсутствием) можно описать всего четыре варианта: 00; 01;10; 11. Такой способ кодирования называется двухбитным. Но он может быть и:

  • четырехбитным (как в примере на абзац выше 1011) позволяет записать 2^4 = 16 комбинаций-символов;
  • восьмибитным (например: 0101 0011; 0111 0001). Одно время он представлял наибольший интерес для программирования, поскольку охватывал 2^8 = 256 значений. Это давало возможность описать все десятичные цифры, латинский алфавит и специальные знаки;
  • шестнадцатибитным (1100 1001 0110 1010) и выше. Но записи с такой длинной – это уже для современных более сложных задач. Современные процессоры используют 32-х и 64-х битную архитектуру;

Скажу честно, единой официальной версии нет, то так сложилось, что именно комбинация из восьми знаков стала стандартной мерой хранящейся информации, именуемой «байт». Таковая могла применяться даже к одной букве, записанной 8-и битным двоичным кодом. Итак, дорогие мои друзья, запомните пожалуйста (если кто не знал):

8 бит = 1 байт.

Так принято. Хотя символ, записанный 2-х или 32-х битным значением так же номинально можно назвать байтом. Кстати, благодаря двоичному коду мы можем оценивать объемы файлов, измеряемые в байтах и скорость передачи информации и интернета (бит в секунду).

Бинарная кодировка в действии

Для стандартизации записи информации для компьютеров было разработано несколько кодировочных систем, одна из которых ASCII, базирующаяся на 8-и битной записи, получила широкое распространение. Значения в ней распределены особым образом:

  • первый 31 символ – управляющие (с 00000000 по 00011111). Служат для служебных команд, вывода на принтер или экран, звуковых сигналов, форматирования текста;
  • следующие с 32 по 127 (00100000 – 01111111) латинский алфавит и вспомогательные символы и знаки препинания;
  • остальные, до 255-го (10000000 – 11111111) – альтернативная, часть таблицы для специальных задач и отображения национальных алфавитов;

Расшифровка значений в ней показано в таблице.

Если вы считаете, что «0» и «1» расположены в хаотичном порядке, то глубоко ошибаетесь. На примере любого числа я вам покажу закономерность и научу читать цифры, записанные двоичным кодом. Но для этого примем некоторые условности:

  • байт из 8 знаков будем читать справа налево;
  • если в обычных числах у нас используются разряды единиц, десятков, сотен, то здесь (читая в обратном порядке) для каждого бита представлены различные степени «двойки»: 256-124-64-32-16-8- 4-2-1;
  • теперь смотрим на двоичный код числа, например 00011011. Там, где в соответствующей позиции есть сигнал «1» – берем значения этого разряда и суммируем их привычным способом. Соответственно: 0+0+0+32+16+0+2+1 = 51. В правильности данного метода вы можете убедиться, взглянув на таблицу кодов.

Теперь, мои любознательные друзья, вы не только знаете что такое двоичный код, но и умеете преобразовать зашифрованную им информацию.

Язык, понятный современной технике

Конечно, алгоритм считывания двоичного кода процессорными устройствами намного сложнее. Но зато его помощью можно записать все что угодно:

  • текстовую информацию с параметрами форматирования;
  • числа и любые операции с ними;
  • графические и видео изображения;
  • звуки, в том числе и выходящие и за предел нашей слышимости;

Помимо этого, благодаря простоте «изложения» возможны различные способы записи бинарной информации:HDD дисках ;

Дополняет преимущества двоичного кодирования практически неограниченные возможности по передаче информации на любые расстояния. Именно такой способ связи используется с космическими кораблями и искусственными спутниками.

Так что, сегодня двоичная система счисления является языком, понятным большинству используемых нами электронных устройств. И что самое интересное, никакой другой альтернативы для него пока не предвидится.

Думаю, что изложенной мною информации для начала вам будет вполне достаточно. А дальше, если возникнет такая потребность, каждый сможет углубиться в самостоятельное изучение этой темы. Я же буду прощаться и после небольшого перерыва подготовлю для вас новую статью моего блога, на какую-нибудь интересную тему.

Лучше, если вы сами ее мне подскажите;)

До скорых встреч.

Всем известно, что компьютеры могут выполнять вычисления с большими группами данных на огромной скорости. Но не все знают, что эти действия зависят всего от двух условий: есть или нет ток и какое напряжение.

Каким же образом компьютер умудряется обрабатывать такую разнообразную информацию?
Секрет заключается в двоичной системе исчисления. Все данные поступают в компьютер, представленные в виде единиц и нулей, каждому из которых соответствует одно состояние электропровода: единицам - высокое напряжение, нулям - низкое или же единицам - наличие напряжения, нулям - его отсутствие. Преобразование данных в нули и единицы называется двоичной конверсией, а окончательное их обозначение - двоичным кодом.
В десятичном обозначении, основанном на десятичной системе исчисления, которая используется в повседневной жизни, числовое значение представлено десятью цифрами от 0 до 9, и каждое место в числе имеет ценность в десять раз выше, чем место справа от него. Чтобы представить число больше девяти в десятичной системе исчисления, на его место ставится ноль, а на следующее, более ценное место слева - единица. Точно так же в двоичной системе, где используются только две цифры - 0 и 1, каждое место в два раза ценнее, чем место справа от него. Таким образом, в двоичном коде только ноль и единица могут быть изображены как одноместные числа, и любое число, больше единицы, требует уже два места. После ноля и единицы следующие три двоичных числа это 10 (читается один-ноль) и 11 (читается один-один) и 100 (читается один-ноль-ноль). 100 двоичной системы эквивалентно 4 десятичной. На верхней таблице справа показаны другие двоично-десятичные эквиваленты.
Любое число может быть выражено в двоичном коде, просто оно займет больше места, чем в десятичном обозначении. В двоичной системе можно записать и алфавит, если за каждой буквой закрепить определенное двоичное число.

Две цифры на четыре места
16 комбинаций можно составить, используя темные и светлые шары, комбинируя их в наборах из четырех штук Если темные шары принять за нули, а светлые за единицы, то и 16 наборов окажутся 16-единичным двоичным кодом, числовая ценность которого составляет от нуля до пяти (см. верхнюю таблицу на стр. 27). Даже с двумя видами шаров в двоичной системе можно построить бесконечное количество комбинаций, просто увеличивая число шариков в каждой группе - или число мест в числах.

Биты и байты

Самая маленькая единица в компьютерной обработке, бит - это единица данных, которая может обладать одним из двух возможных условий. К примеру, каждая из единиц и нулей (справа) означает 1 бит. Бит можно представить и другими способами: наличием или отсутствием электрического тока, дырочкой и ее отсутствием, направлением намагничивания вправо или влево. Восемь битов составляют байт. 256 возможных байтов могут представить 256 знаков и символов. Многие компьютеры обрабатывают байт данных одновременно.

Двоичная конверсия. Четырехцифровой двоичный код может представить десятичные числа от 0 до 15.

Кодовые таблицы

Когда двоичный код используется для обозначения букв алфавита или пунктуационных знаков, требуются кодовые таблицы, в которых указано, какой код какому символу соответствует. Составлено несколько таких кодов. Большинство ПК приспособлено под семицифровой код, называемый ASCII, или американский стандартный код для информационного обмена. На таблице справа показаны коды ASCII для английского алфавита. Другие коды предназначаются для тысяч символов и алфавитов других языков мира.

Часть таблицы кода ASCII

Двоичный код - это представление информации в комбинации 2-х знаков 1 или 0, как говориться в программирование есть или нет, истина или лож, true или false. Обычному, человеку трудно понять, как информацию можно представить в виде нулей и единиц. Я постараюсь немного прояснить эту ситуацию.

На самом деле двоичный код - это просто! Например, любую букву алфавита можно представить в виде набора нулей и единиц. Например, буква H латинского алфавита будет иметь такой вид в двоичной системе – 01001000, буква E – 01000101, бука L имеет такое двоичное представление – 01001100, P – 01010000.

Теперь не сложно догадаться, что для того чтобы написать английское слово HELP на машинном языке нужно использовать вот такой двоичный код:

01001000 01000101 01001100 01010000

Именно такой код использует для своей работы наш домашний компьютер. Обычному человеку читать такой код очень сложно, а вот для вычислительных машин он самый понятный.

Двоичный код (машинный код) в наше время используется в программировании, ведь компьютер работает именно благодаря двоичному коду. Но не стоит думать, что процесс программирования сводится к набору единиц и нулей. Специально, чтобы упростить понимание между человеком и компьютером придумали языки программирования (си++, бейсик и т.п.). Программист пишет программу на понятом ему языке, а потом с помощью специальной программы-компилятора переводит свое творение в машинный код, который и запускает компьютер.

Переводим натуральное число десятичной системы счисления в двоичную

Берем нужное число, у меня это будет 5, делим число на 2:
5: 2 = 2,5 есть остаток, значит, первое число двоичного кода будет 1 (если нет - 0 ). Откидываем остаток и снова делим число на 2 :
2: 2 = 1 ответ без остатка, значит, второе число двоичного кода будет - 0.Снова делим результат на 2:
1: 2 = 0.5 число получилось с остатком значит записываем 1 .
Ну а так как результат равный 0 нельзя больше поделить, двоичный код готов и в итоге у нас получилось число двоичного кода 101 . Я думаю, переводить из десятичного числа в двоичное мы научились, теперь научимся делать наоборот.

Переводим число из двоичной системы в десятичную

Тут тоже достаточно просто, давайте наше с вами двоичное число пронумеруем, начинать необходимо с нуля с конца числа.

101 это 1^2 0^1 1^0.

Что из этого вышло? Мы предали степени числам! теперь по формуле:

(x * 2^y) + (x * 2^y) + (x * 2^y)

где x - порядковое число двоичного кода
y - степень этого числа.
Формула будет растягиваться в зависимости от размера вашего числа.
Получаем:

(1 * 2^2) + (0 * 2^1) + (1 * 2^0) = 4 + 0 + 1 = 5.

История двоичной системы счисления

Впервые двоичную систему предложил Лейбиц, он полагал, что данная система поможет в сложных математических вычислениях, да и вообще принесет пользу науке. Но по некоторым данным, до того как Лейбиц предложил двоичную систему счисления в Китае на стене появилась надпись, которую можно было расшифровать используя двоичный код. На этой надписи были нарисованы длинные и короткие палочки и если предположить, что длинная это 1, а короткая 0, вполне возможно, что в Китае идея двоичного кода ходила за много лет до его изобретения. Хотя расшифровка кода найденного на стене выявила там простое натуральное число, но все же факт остается фактом.

Результат уже получен!

Системы счисления

Существуют позиционные и не позиционные системы счисления. Арабская система счисления, которым мы пользуемся в повседневной жизни, является позиционной, а римская − нет. В позиционных системах счисления позиция числа однозначно определяет величину числа. Рассмотрим это на примере числа 6372 в десятичном системе счисления. Пронумеруем это число справа налево начиная с нуля:

Тогда число 6372 можно представить в следующем виде:

6372=6000+300+70+2 =6·10 3 +3·10 2 +7·10 1 +2·10 0 .

Число 10 определяет систему счисления (в данном случае это 10). В качестве степеней взяты значения позиции данного числа.

Рассмотрим вещественное десятичное число 1287.923. Пронумеруем его начиная с нуля позиции числа от десятичной точки влево и вправо:

Тогда число 1287.923 можно представить в виде:

1287.923 =1000+200+80 +7+0.9+0.02+0.003 = 1·10 3 +2·10 2 +8·10 1 +7·10 0 +9·10 -1 +2·10 -2 +3·10 -3 .

В общем случае формулу можно представить в следующем виде:

Ц n ·s n +Ц n-1 ·s n-1 +...+Ц 1 ·s 1 +Ц 0 ·s 0 +Д -1 ·s -1 +Д -2 ·s -2 +...+Д -k ·s -k

где Ц n -целое число в позиции n , Д -k - дробное число в позиции (-k), s - система счисления.

Несколько слов о системах счисления.Число в десятичной системе счисления состоит из множества цифр {0,1,2,3,4,5,6,7,8,9}, в восьмеричной системе счисления - из множества цифр {0,1,2,3,4,5,6,7}, в двоичной системе счисления - из множества цифр {0,1}, в шестнадцатеричной системе счисления - из множества цифр {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}, где A,B,C,D,E,F соответствуют числам 10,11,12,13,14,15.В таблице Таб.1 представлены числа в разных системах счисления.

Таблица 1
Система счисления
10 2 8 16
0 0 0 0
1 1 1 1
2 10 2 2
3 11 3 3
4 100 4 4
5 101 5 5
6 110 6 6
7 111 7 7
8 1000 10 8
9 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F

Перевод чисел из одной системы счисления в другую

Для перевода чисел с одной системы счисления в другую, проще всего сначала перевести число в десятичную систему счисления, а затем, из десятичной системы счисления перевести в требуемую систему счисления.

Перевод чисел из любой системы счисления в десятичную систему счисления

С помощью формулы (1) можно перевести числа из любой системы счисления в десятичную систему счисления.

Пример 1. Переводить число 1011101.001 из двоичной системы счисления (СС) в десятичную СС. Решение:

1 ·2 6 +0 ·2 5 +1 ·2 4 +1 ·2 3 +1 ·2 2 +0 ·2 1 +1 ·2 0 +0 ·2 -1 +0 ·2 -2 +1 ·2 -3 =64+16+8+4+1+1/8=93.125

Пример 2. Переводить число 1011101.001 из восьмеричной системы счисления (СС) в десятичную СС. Решение:

Пример 3 . Переводить число AB572.CDF из шестнадцатеричной системы счисления в десятичную СС. Решение:

Здесь A -заменен на 10, B - на 11, C - на 12, F - на 15.

Перевод чисел из десятичной системы счисления в другую систему счисления

Для перевода чисел из десятичной системы счисления в другую систему счисления нужно переводить отдельно целую часть числа и дробную часть числа.

Целую часть числа переводится из десятичной СС в другую систему счисления - последовательным делением целой части числа на основание системы счисления (для двоичной СС - на 2, для 8-ичной СС - на 8, для 16-ичной - на 16 и т.д.) до получения целого остатка, меньше, чем основание СС.

Пример 4 . Переведем число 159 из десятичной СС в двоичную СС:

159 2
158 79 2
1 78 39 2
1 38 19 2
1 18 9 2
1 8 4 2
1 4 2 2
0 2 1
0

Как видно из Рис. 1, число 159 при делении на 2 дает частное 79 и остаток 1. Далее число 79 при делении на 2 дает частное 39 и остаток 1 и т.д. В результате построив число из остатков деления (справа налево) получим число в двоичной СС: 10011111 . Следовательно можно записать:

159 10 =10011111 2 .

Пример 5 . Переведем число 615 из десятичной СС в восьмеричную СС.

615 8
608 76 8
7 72 9 8
4 8 1
1

При приведении числа из десятичной СС в восьмеричную СС, нужно последовательно делить число на 8, пока не получится целый остаток меньшее, чем 8. В результате построив число из остатков деления (справа налево) получим число в восьмеричной СС: 1147 (см. Рис. 2). Следовательно можно записать:

615 10 =1147 8 .

Пример 6 . Переведем число 19673 из десятичной системы счисления в шестнадцатеричную СС.

19673 16
19664 1229 16
9 1216 76 16
13 64 4
12

Как видно из рисунка Рис.3, последовательным делением числа 19673 на 16 получили остатки 4, 12, 13, 9. В шестнадцатеричной системе счисления числе 12 соответствует С, числе 13 - D. Следовательно наше шестнадцатеричное число - это 4CD9.

Для перевода правильных десятичных дробей (вещественное число с нулевой целой частью) в систему счисления с основанием s необходимо данное число последовательно умножить на s до тех пор, пока в дробной части не получится чистый нуль, или же не получим требуемое количество разрядов. Если при умножении получится число с целой частью, отличное от нуля, то эту целую часть не учитывать (они последовательно зачисливаются в результат).

Рассмотрим вышеизложенное на примерах.

Пример 7 . Переведем число 0.214 из десятичной системы счисления в двоичную СС.

0.214
x 2
0 0.428
x 2
0 0.856
x 2
1 0.712
x 2
1 0.424
x 2
0 0.848
x 2
1 0.696
x 2
1 0.392

Как видно из Рис.4, число 0.214 последовательно умножается на 2. Если в результате умножения получится число с целой частью, отличное от нуля, то целая часть записывается отдельно (слева от числа), а число записывается с нулевой целой частью. Если же при умножении получиться число с нулевой целой частью, то слева от нее записывается нуль. Процесс умножения продолжается до тех пор, пока в дробной части не получится чистый нуль или же не получим требуемое количество разрядов. Записывая жирные числа (Рис.4) сверху вниз получим требуемое число в двоичной системе счисления: 0.0011011 .

Следовательно можно записать:

0.214 10 =0.0011011 2 .

Пример 8 . Переведем число 0.125 из десятичной системы счисления в двоичную СС.

0.125
x 2
0 0.25
x 2
0 0.5
x 2
1 0.0

Для приведения числа 0.125 из десятичной СС в двоичную, данное число последовательно умножается на 2. В третьем этапе получилось 0. Следовательно, получился следующий результат:

0.125 10 =0.001 2 .

Пример 9 . Переведем число 0.214 из десятичной системы счисления в шестнадцатеричную СС.

0.214
x 16
3 0.424
x 16
6 0.784
x 16
12 0.544
x 16
8 0.704
x 16
11 0.264
x 16
4 0.224

Следуя примерам 4 и 5 получаем числа 3, 6, 12, 8, 11, 4. Но в шестнадцатеричной СС числам 12 и 11 соответствуют числа C и B. Следовательно имеем:

0.214 10 =0.36C8B4 16 .

Пример 10 . Переведем число 0.512 из десятичной системы счисления в восьмеричную СС.

0.512
x 8
4 0.096
x 8
0 0.768
x 8
6 0.144
x 8
1 0.152
x 8
1 0.216
x 8
1 0.728

Получили:

0.512 10 =0.406111 8 .

Пример 11 . Переведем число 159.125 из десятичной системы счисления в двоичную СС. Для этого переведем отдельно целую часть числа (Пример 4) и дробную часть числа (Пример 8). Далее объединяя эти результаты получим:

159.125 10 =10011111.001 2 .

Пример 12 . Переведем число 19673.214 из десятичной системы счисления в шестнадцатеричную СС. Для этого переведем отдельно целую часть числа (Пример 6) и дробную часть числа (Пример 9). Далее объединяя эти результаты получим.