Биография анри пуанкаре.

Жюль Анри Пуанкаре (фр. Jules Henri Poincare; 29 апреля 1854, Нанси, Франция - 17 июля 1912, Париж, Франция). Французский математик, механик, физик, астроном и философ. Глава Парижской академии наук (1906), член Французской академии (1908) и ещё более 30 академий мира, в том числе иностранный член-корреспондент Петербургской академии наук (1895).

Историки причисляют Анри Пуанкаре к величайшим математикам всех времён. Он считается, наряду с Гильбертом, последним математиком-универсалом, учёным, способным охватить все математические результаты своего времени. Его перу принадлежат более 500 статей и книг.

Среди самых крупных достижений Пуанкаре:

Создание топологии.
Качественная теория дифференциальных уравнений.
Теория автоморфных функций.
Разработка новых, чрезвычайно эффективных методов небесной механики.
Создание математических основ теории относительности, а также обобщение принципа относительности на все физические явления.
Наглядная модель геометрии Лобачевского.


Его отец, Леон Пуанкаре (1828-1892), был профессором медицины в Университете Нанси. Мать Анри, Эжени Лануа (Eugénie Launois), всё свободное время посвящала воспитанию детей - сына Анри и младшей дочери Алины.

Среди родственников Пуанкаре имеются и другие знаменитости: кузен Раймон стал президентом Франции (с 1913 по 1920 год), другой кузен, известный физик Люсьен Пуанкаре, был генеральным инспектором народного просвещения Франции, а с 1917 по 1920 год - ректором Парижского университета.

С самого детства за Анри закрепилась репутация рассеянного человека, которую он сохранил на всю жизнь. В детстве он перенёс дифтерию, которая осложнилась временным параличом ног и мягкого нёба. Болезнь затянулась на несколько месяцев, в течение которых он не мог ни ходить, ни говорить. За это время у него очень сильно развилось слуховое восприятие и, в частности, появилась необычная способность - цветовое восприятие звуков, которое осталось у него до конца жизни.

Хорошая домашняя подготовка позволила Анри в восемь с половиной лет поступить сразу на второй год обучения в лицее. Там его отметили как прилежного и любознательного ученика с широкой эрудицией. На этом этапе его интерес к математике умерен - через некоторое время он переходит на отделение словесности.

5 августа 1871 года Пуанкаре получил степень бакалавра словесности с оценкой «хорошо». Через несколько дней Анри изъявил желание участвовать в экзаменах на степень бакалавра (естественных) наук, который ему удалось сдать, но лишь с оценкой «удовлетворительно», поскольку на письменном экзамене по математике он по рассеянности ответил не на тот вопрос.

В последующие годы математические таланты Пуанкаре проявлялись всё более и более явно. В октябре 1873 года он стал студентом престижной парижской Политехнической школы, где на вступительных экзаменах занял первое место. Его наставником по математике был Шарль Эрмит. В следующем году Пуанкаре опубликовал в «Анналах математики» свою первую научную работу по дифференциальной геометрии.

По результатам двухлетнего обучения (1875) Пуанкаре приняли в Горную школу, наиболее авторитетное в то время специальное высшее учебное заведение. Там он через несколько лет (1879), под руководством Эрмита, защитил докторскую диссертацию, о которой Гастон Дарбу, входивший в состав комиссии, сказал: «С первого же взгляда мне стало ясно, что работа выходит за рамки обычного и с избытком заслуживает того, чтобы её приняли. Она содержала вполне достаточно результатов, чтобы обеспечить материалом много хороших диссертаций».

Получив учёную степень, Пуанкаре начал преподавательскую деятельность в университете города Кан в Нормандии (декабрь 1879 года). Тогда же он опубликовал свои первые серьёзные статьи - они посвящены введённому им классу автоморфных функций.

Там же, в Кане, он познакомился со своей будущей женой Луизой Пулен д’Андеси (Louise Poulain d’Andecy) . 20 апреля 1881 года состоялась их свадьба. У них родились сын и три дочери.

Оригинальность, широта и высокий научный уровень работ Пуанкаре сразу поставили его в ряд крупнейших математиков Европы и привлекли внимание других видных математиков.

В 1881 году Пуанкаре был приглашён занять должность преподавателя на Факультете наук в Парижском университете и принял это приглашение. Параллельно, с 1883 по 1897, он преподавал математический анализ в Высшей Политехнической школе.

В 1881-1882 годах Пуанкаре создал новый раздел математики - качественную теорию дифференциальных уравнений. Он показал, каким образом можно, не решая уравнения (поскольку это не всегда возможно), получить практически важную информацию о поведении семейства решений. Этот подход он с большим успехом применил к решению задач небесной механики и математической физики.

Десятилетие после завершения исследования автоморфных функций (1885-1895) Пуанкаре посвятил решению нескольких сложнейших задач астрономии и математической физики. Он исследовал устойчивость фигур планет, сформированных в жидкой (расплавленной) фазе, и обнаружил, кроме эллипсоидальных, несколько других возможных фигур равновесия.

В 1885 году король Швеции Оскар II организовал математический конкурс и предложил участникам на выбор четыре темы. Самой сложной была первая: рассчитать движение гравитирующих тел Солнечной системы. Пуанкаре показал, что эта задача (т. н. задача трёх тел) не имеет законченного математического решения. Тем не менее Пуанкаре вскоре предложил эффективные методы её приближённого решения. В 1889 году Пуанкаре (совместно с Полем Аппелем, исследовавшим четвёртую тему), получил премию шведского конкурса. Один из двух судей, Миттаг-Леффлер, писал о работе Пуанкаре: «Премированный мемуар окажется среди самых значительных математических открытий века». Второй судья, Вейерштрасс, заявил, что после работы Пуанкаре «начнётся новая эпоха в истории небесной механики». За этот успех французское правительство наградило Пуанкаре орденом Почётного легиона.

Осенью 1886 года 32-летний Пуанкаре возглавил кафедру математической физики и теории вероятностей Парижского университета. Символом признания Пуанкаре ведущим математиком Франции стало избрание его президентом Французского математического общества (1886) и членом Парижской академии наук (1887).

В 1887 году Пуанкаре обобщил на случай нескольких комплексных переменных теорему Коши и положил начало теории вычетов в многомерном комплексном пространстве.

В 1889 году выходит фундаментальный «Курс математической физики» Пуанкаре в 10 томах , а в 1892-1893 годах - два тома монографии «Новые методы небесной механики» (третий том был опубликован в 1899 году).

С 1893 года Пуанкаре - член престижного Бюро долгот (в 1899 году избран его президентом).

С 1896 года переходит на университетскую кафедру небесной механики, которую занимал до конца жизни. В этот же период, продолжая работы по астрономии, он одновременно реализует давно продуманный замысел создания качественной геометрии, или топологии: с 1894 года он начинает публикацию статей, посвящённых построению новой, исключительно перспективной науки.

В августе 1900 года Пуанкаре руководил секцией логики Первого Всемирного философского конгресса, проходившего в Париже. Там он выступил с программным докладом «О принципах механики», где изложил свою конвенционалистскую философию: принципы науки суть временные условные соглашения, приспособленные к опыту, но не имеющие прямых аналогов в реальности. Эту платформу он впоследствии детально обосновал в книгах «Наука и гипотеза» (1902), «Ценность науки» (1905) и «Наука и метод» (1908). В них он также описал своё ви́дение сущности математического творчества, в котором главную роль играет интуиция, а логике отведена роль обоснования интуитивных прозрений. Ясный стиль и глубина мысли обеспечила этим книгам значительную популярность, они были сразу же переведены на многие языки. Одновременно в Париже проходил Второй Международный конгресс математиков, где Пуанкаре был избран председателем (все конгрессы были приурочены к Всемирной выставке 1900 г.).

В 1903 году Пуанкаре был включён в группу из 3 экспертов, рассматривавших улики по «делу Дрейфуса». На основании единогласно принятого экспертного заключения кассационный суд признал Дрейфуса невиновным.

Основной сферой интересов Пуанкаре в XX веке становятся физика (особенно электромагнетизм) и философия науки. Пуанкаре показывает глубокое понимание электромагнитной теории, его проницательные замечания высоко ценят и учитывают Лоренц и другие ведущие физики. С 1890 года Пуанкаре опубликовал серию статей по теории Максвелла, а в 1902 году начал читать курс лекций по электромагнетизму и радиосвязи. В своих статьях 1904-1905 годов Пуанкаре далеко опережает Лоренца в понимании ситуации, фактически создав математические основы теории относительности (физический фундамент этой теории разработал Эйнштейн в 1905 году).

В 1906 году Пуанкаре избран президентом Парижской академии наук.

В 1908 году он тяжело заболел и не смог сам прочитать свой доклад «Будущее математики» на Четвёртом математическом конгрессе. Первая операция закончилась успешно, но спустя 4 года состояние Пуанкаре вновь ухудшилось. Скончался в Париже после операции от эмболии 17 июля 1912 года в возрасте 58 лет. Похоронен в семейном склепе на кладбище Монпарнас.

Вероятно, Пуанкаре предчувствовал свою неожиданную смерть, так как в последней статье описал нерешённую им задачу («последнюю теорему Пуанкаре»), чего никогда раньше не делал. Спустя несколько месяцев эта теорема была доказана Джорджем Биркгофом. Позже при содействии Биркгофа во Франции был создан Институт теоретической физики имени Пуанкаре.

Научные термины, связанные с именем Пуанкаре:

Гипотеза Пуанкаре
Группа Пуанкаре
Двойственность Пуанкаре
Интеграл Пуанкаре - Картана
Лемма Пуанкаре
Метрика Пуанкаре
Модель Пуанкаре пространства Лобачевского
Нормальная форма Пуанкаре - Дюлака
Отображение Пуанкаре
Последняя теорема Пуанкаре
Сфера Пуанкаре
Теорема Коши - Пуанкаре
Теорема Пуанкаре - Бендиксона
Теорема Пуанкаре - Биркгофа - Витта
Теорема Пуанкаре - Вольтерры
Теорема Пуанкаре о векторном поле
Теорема Пуанкаре о возвращении
Теорема Пуанкаре о классификации гомеоморфизмов окружности
Теорема Пуанкаре о разложении интегралов по малому параметру
Теорема Пуанкаре о скорости роста целой функции.



В каждой своей работе Пуанкаре удалось достичь значимых результатов. Основное применение его достижений прикладное. При своем общем характере, труды Анри Пуанкаре позже послужили развитию науки, применялись и применяются до сих пор во многих научных областях.

Детские годы

Анри Пуанкаре появился на свет 29.04.1854 г в небольшом французском городке Сите Дюкаль близ Нанси в семье врача и преподавателя медицинского факультета Леон Пуанкаре и Эжени Лануа, которая занималась исключительно домашними делами и детьми. Детей было двое: Анри и Алина. С самого раннего возраста маленький Анри страдает сильной рассеянностью. Она будет сопровождать его всю жизнь. В то время еще никто не осознает, что этот недостаток – свидетельство его таланта погружаться в свои мысли, анализировать, размышлять.

Мальчик в раннем возрасте переболел дифтерией. Болезнь дала осложнение, и несколько месяцев ребенок не мог ходить и не разговаривал. Анри стал больше обращать внимания на звуки, а с годами это вылилось в то, что звуки у него стали ассоциироваться с определенным цветом. Такая способность есть у многих детей, но к зрелости она пропадает. У Пуанкаре она осталась на всю жизнь.

Со временем мальчик поправился, стал ходить и говорить, но физически был очень слаб. Болезнь изменила его и внутренне: он стал стеснительным и робким. Занимался с ним на дому А. Гинцелин, образованнейший по тем временам человек. Интересно, что какую бы науку они не штудировали, Анри редко что писал, отлично считал в уме, его не заставляли делать домашнюю работу и не загружали излишней информацией. Все уроки могли казаться только беседой взрослого и ребенка обо всем на свете. Однако, такие занятия способствовали улучшению и без того хорошей слуховой памяти. Почва оказалась "благодатной", и из болезненного робкого мальчугана вырос гениальный ученый со своей индивидуальной манерой. К слову сказать, нелюбовь к всякой писанине у Жюля Анри останется до конца жизни.

Анри настолько хорошо усвоил знания в домашней школе, что поступил сразу в 9-ый класс. Ему было чуть больше 8-ми лет. Классы лицея в то время считались от 10 до 1. Первый был подобен нашему одиннадцатому, выпускному. Педагоги лицея в Нанси гордились им. Он прекрасно писал сочинения и изложения, без труда делал все математические задания. Однако, то время математика мало его занимала. Преподаватель математики пророчил ему великое будущее, но Пуанкаре больше занимается словесностью и переходит на гуманитарное отделение.

19.06.1870 г начинается война Франции с Пруссией, которая принесла разочарование и горе французам. В это период Анри активно помогает своему отцу, который стоит во главе всей медицины города по работе с ранеными солдатами. Парень выполняет обязанности помощника в амбулатории и личного секретаря.

События развиваются бурно. Захват города немцами, затем провозглашение Коммуны, бегство верхушки Тьера и майская "кровавая неделя" потрясли шестнадцатилетнего юношу. Диссертация "Как может нация возвыситься?" по окончании гимназии отразила все его переживания и мысли о Родине.

05.08.1871 г экзамен на бакалавра словесности в университет сдан с отметкой "хорошо". Казалось бы, впереди его ждет филологический факультет, но Пуанкаре 07.11.1871 г. сдает экзамены на степень бакалавра естественных наук. Математика была почти провалена все по той же легендарной рассеянности. Жюль Анри опоздал на экзамен, растерялся и стал рассказывать совершенно иное, материал, не касающийся экзаменационного вопроса. К неудаче отнеслись с пониманием, так как знали о выдающихся способностях Анри. Его допустили к устному экзамену, где он показал себя во всем блеске. Степень бакалавра естественных наук была получена.

Обучаясь в классе элементарной математики, Пуанкаре изучает дополнительную литературу и неоднократно побеждает в общих математических состязаниях.

Учеба в Политехнической и Горной школах

С осени 1873 г. Пуанкаре – студент Политехнической школы. Сначала возглавляя список лучших, в дальнейшем он теряет лидерские позиции из-за некоторых предметов, которые не воспринимает всерьез. Это рисование, черчение и военное искусство. Заканчивает школу уже на вторых позициях. Затем он поступает в Горную школу, считавшуюся по тем временам очень престижным учебным заведением. Там он занят научными исследованиями в области кристаллографии.

В 1879 г. в Горной школе под руководством Эрмита, защитил докторскую диссертацию, которая получает одобрение профессора Сорбонны Г. Дарбу. Профессор считал, что в одной работе Пуанкаре проработано материала и выдвинуто идей на несколько диссертаций.

С апреля 1879 г. Пуанкаре трудится в качестве инженера шахт. После одного из взрывов в шахте, когда погибли люди, он спускается на место взрыва и выясняет, почему произошла трагедия и каковы ее размеры. Защитив диссертацию, начинает преподавательскую деятельность. Он работает в Кане на курсе мат. анализа на Факультете наук.

Семейная жизнь

Безграничная любовь к математике не заслоняет от него другую, не менее важную - любовь к женщине. 20.04.1881 г. Анри Пуанкаре и Луиза Полен д"Андеси сочетаются законным браком. Пышная свадьба состоялась в Париже. Сначала детей долго не было, затем в 1887 г. на свет появляется долгожданная девочка, которую назвали Жанной, спустя два года родилась Ивонна, затем – Генриетта. Бог посылает чете Пуанкаре еще и сына. Леон родился через два года после Генриетты.

Семейная жизнь математика была полна покоя и любви. Во многом, благодаря тому, что мадам Пуанкаре поддерживала вокруг супруга и в семье благоприятную атмосферу, ему удалось провести столь "гигантскую работу мысли".

Достижения в математике

Появление целой серии заметок в журнале "Compres Rendus" (Франция) о фуксовых функциях привлекает внимание маститых математиков, Вейерштрасса, С. Ковалевской, и вызывают неподдельный интерес в научном мире. Затем следует еще пять интереснейших работ по той же тематике.

После своего открытия автоморфных функций математик получает должность преподавателя в университете Парижа. Переехав туда, двадцатисемилетний ученый занимается семьей, преподает и активно сотрудничает с новоприбывшими молодыми математиками Полем Аппелем и Эмилем Пикаром. Их наставником является профессор Ш. Эрмит.

В Париже выходит работа Пуанкаре из 4-х ч. "О кривых, определяемых дифференциальными уравнениями”(1882-1886). До ученого такой метод оставался без внимания. Им закладываются основы теории устойчивости дифференциальных уравнений по начальным условиям и малым параметрам. В 1886 г Ж. А. Пуанкаре становится во главе кафедры математической физики и теории вероятностей. А когда ему исполнилось 33, становится членом французской Академии наук.

Все его изыскания привели исследователя к топологии. Ему принадлежит заслуга введения таких понятий, как числа Бетти, фундаментальная группа, им доказана формула Эйлера-Пуанкаре и дана формулировка общего понятия размерности. Он сделал множество открытий в алгебраической топологии, в дифференциальной геометрии, в теории вероятностей и мн. др. Написал работы по обоснованию принципа Дирихле.

Достижения в небесной механике

С детства Пуанкаре увлекался звездами и заинтересовался законами, по которым движутся тела небесные. Его работа "Никогда не перейдут светила предписанных границ" в 1889 г получила премию на международном конкурсе. Был написан трактат "Новые методы небесной механики" (в 3-х томах). Опубликованы значимые труды об устойчивости движения и о фигурах равновесия гравитирующей вращающейся жидкости, введен метод "интегральных инвариантов" и мн. др. С 1896 г Пуанкаре возглавляет кафедры небесной механики Сорбоннского университета.

Достижения в физике

Влияние Пуанкаре на развитие физики огромно. Еще задолго до Эйнштейна, в 1897 - 1905 гг., в своих статьях, в частности в работе "Измерение времени", он раскрыл некоторые положения специальной теории относительности. Кроме того, его сильно увлекала работа со студентами. Был прочитан весьма объемный курс лекций по физике, воплотившийся в дальнейшем в двенадцатитомном издании. Было затронуто все самое актуальное в науке и дан свой подход к решению. Многие умозаключения других ученых Пуанкаре предвосхитил гораздо раньше.

1902 г – выходит в свет "Наука и гипотеза", всколыхнувшая многих научных деятелей. 1904 г. - Пуанкаре выступает с лекцией в США (г. Сент-Луис), где производит фурор. Им в статье "Заметки Академии наук" (1905) доказана инвариантность уравнений Максвелла относительно преобразований Лоренца. По мнению М. Борна, теория относительности – это не заслуга одного ученого, а результат коллективного труда блистательных ученых, каждый из которых внес в нее свою лепту. К ним, несомненно, относится и А. Пуанкаре.

Пуанкаре – Гамильтон – Перельман

Французским ученым было выдвинуто много интересных гипотез. Одна из них получила название "гипотеза Пуанкаре". В исходной форме она утверждает, что всякое односвязное компактное трехмерное многообразие без края гомеоморфно трёхмерной сфере. По словам американского ученого Маркуса Дю Сотой (Оксфорд) гипотеза Пуанкаре есть "центральная проблема математики и физики, попытка понять какой формы может быть Вселенная...". Гипотеза вошла в золотой список Семи Задач Тысячелетия, за решение каждой из них институт Клэя выдвинул награду в 1 млн долларов США.

Сформированная в 1904 г., долгое время не привлекала особого внимания. Интерес к ней пробудил Генри Уайтхед (Англия), объявив о своем доказательстве. Оно оказалось неверным. С тех пор многие пытались сделать это, особенно в 60-е гг прошлого столетия. Было великое множество доказательств, которые в итоге оказывались ошибочными.

Нашему соотечественнику Перельману удалось доказать гипотезу Пуанкаре. Россиянин опубликовал свою работу в 2004 г, ему была присуждена международная премия «Медаль Филдса», а в 2010 г. Математический институт Клэя присудил Григорию Перельману премию в 1 млн долл. США за доказательство этой Проблемы тысячелетия. От всех наград Перельман отказался.

Работал над доказательством и американский математик Гамильтон, не завершив своей работы до конца, он перестает ею интересоваться. В 2011 г., по настоянию Григория Перельмана, Р. Гамильтон получил награду в $1 000 000 за создание математической теории, отчасти использованной Г. Перельманом.

Награды и звания

Заслуги Пуанкаре были оценены по достоинству. Он обладатель целого ряда премий: Поиселе (1885), короля Швеции Оскара II (1889), Жана Рейно Парижской академии наук (1896), Бойя Венгерской академии наук (1905). Награжден медалями: Лондонского королевского астрономического общества (1900), им. Дж. Сильвестера Лондонского королевского общества (1901) и др. Многие научные французские, британские и российские общества и академии считали честью его членство в своих рядах.

Не стало великого ученого в Париже 17.07.1912 г, ему было всего 58 лет. Пуанкаре погребен в родовом склепе на кладбище Монпарнас. В честь него названы один из лунных кратеров и астероид, его имя носят парижский Математический институт, улица в Париже и целый ряд математических терминов и задач.

Жюль Анри Пуанкаре родился в городе Нанси 29 апреля 1854 года у Леона Пуанкаре и Эжени Лануа. Его семья была известной и знатной, с хорошим достатком; его отец был преподавателем в Университете Лотарингии. Двоюродный брат Анри Пуанкаре, Раймон Пуанкаре, был президентом Франции с 1913 по 1920 годы.

Образование

В детстве Анри Пуанкаре был увлечённым парнем, который с наслаждением занимался математикой. Несмотря на плохое зрение и низкую концентрацию, ему всегда удавалось быть лучшим в предметах, связанных с наукой и математикой. Он побеждал в многочисленных конкурсах и завоевал множество наград, а в 1871 году закончил лицей со степенью бакалавра в области наук и литературы. В 1873 году он поступил в Политехнический колледж, в котором продолжил изучение математики, а в 1874 году опубликовал свою первую диссертацию, написанием которой руководил Шарль Эрмит. С успехом закончив колледж в 1875 году он поступил в Горную школу Парижа и получил инженерную степень в 1879 году.

Карьера

Карьера Пуанкаре начала развиваться с самого первого года работы, когда его назначили горным инспектором в северо-восточной провинции Франции, Везуле. В 1879 году он был направлен на наблюдение за местом бедствия. Он изучил место происшествия и представил научное заключение о вероятных причинах произошедшего. Вскоре после окончания Парижского университета, Пуанкаре пригласили занять пост младшего преподавателя математики в Университете Кана.

В течение долгого времени он работал в Парижском университете занимая многочисленные посты на физических и математических факультетах, иногда также занимаясь астрономией. В начале 1880 года Пуанкаре обнаружил, что автоморфные и эллиптические функции принадлежат одной и той же группе алгебраических уравнений.

В течение 1880-х годов Пуанкаре занимался механикой небесных тел, в результате представив трактат по своим изысканиям. В 1887 году он занимался известной «задачей трёх тел», в которой речь шла о движении гравитирующих тел.

Король Швеции, Оскар II, наградил Пуанкаре, которому удалось найти решение проблемы стабильности солнечной системы. Это был стандартный образец классической механики, который в конце концов привёл к открытию «теории хаоса». Пуанкаре также внёс свой вклад в создание специальной теории относительности, которой он занимался совместно с Хендриком Лоренцем и Альбертом Эйнштейном.

Несмотря на свою занятость в работе над различными аспектами науки и математики, Пуанкаре не оставил работу инженера, и, со временем, в 1893 году, он был назначен главным инженером в «Горном корпусе», после чего в 1910 году его опять повысили, на этот раз до должности инспектора.

Пуанкаре сотрудничал с “Бюро долгот” Франции, в котором он занимался координированием времени по всему миру. В начале 1895 года Пуанкаре представил новые методы топологии и предложил множество дифференциальных уравнений, которые способствовали пониманию теории непрерывности. В 1899 году он написал трактат с названием «Новые методы небесной механики», который неоднократно переиздавался. Этот трактат стал своего рода «библией» в мире математики и небесной механики.

Достижения

В течение долгих лет в университете Пуанкаре внёс большой вклад в математику и науку в целом в виде алгебраической топологии, теории относительности, возвратной теоремы, задачи трёх тел, квантовой механики, дифференциальных уравнений и многого другого. Он вдохновил большое количество студентов, которые впоследствии также внесли свой вклад в развитие математики и других дисциплин. Некоторые из его известных студентов: Димитрие Помпей, Тобиас Данциг и Луи Башелье.

Личная жизнь

Пуанкаре женился на Луизе Пулен д’Андеси в начале 1881 года. У пары родилось четверо детей.

За свою жизнь он получил множество наград и внёс значимый вклад в развитие Французской академии наук и Британского королевского астрономического общества. И хотя Пуанкаре был всецело поглощён своей работой, он также много времени уделял своей семье.

Смерть и наследие

В первой половине 1912 года у Пуанкаре возникли проблемы с простатой и ему пришлось перенести операцию на ней. Пуанкаре умер из-за закупорки сосуда 17 июля 1912 года в возрасте 58 лет. Работы Пуанкаре завоевали популярность во всём мире. Он написал несколько книг, которые ещё долгое время не позволяли забыть его имя. Его работы по термодинамике, квантовой физике, оптике и механике жидкости привлекли множество последователей, например, Марию Кюри.

Многие заведения и научные встречи были названы в честь Анри Пуанкаре: «Институт Анри Пуанкаре» и «Семинар Пуанкаре». В честь его заслуг и в память о его наследии один из кратеров на Луне был назван в его честь.

Оценка по биографии

Новая функция! Средняя оценка, которую получила эта биография. Показать оценку

Феномен Пуанкаре

Пешие прогулки были единственным видом физических упражнений, которыми Пуанкаре занимался охотно и систематически. По свидетельствам близко знавших его людей, он мог пройти до 15 километров. Впрочем, даже этот род физкультуры он скорее всего рассматривал как составную часть своей умственной деятельности. Ходьба была неотъемлемым атрибутом активной работы его мозга. Можно вспомнить по этому поводу слова одного из персонажей Эмиля Ожье, который говорил: «Ноги - колеса мысли». Значительную часть своих теоретических исследований Пуанкаре проводил «на ходу».

Его племянник П. Бутру пишет в своих воспоминаниях: «Он предается своим размышлениям на улице, направляясь в Сорбонну, присутствуя на заседаниях различных научных обществ, во время вошедших в привычку продолжительных прогулок после завтрака. Он размышляет у себя в прихожей, в зале заседаний Института, разгуливая взад и вперед мелкими шажками с сосредоточенным видом, позванивая связкой ключей. Он размышляет за столом, в кругу семьи, в гостиной, нередко обрывая разговор на середине и предоставляя своему собеседнику следовать за скачком, который совершила его мысль. Всю работу, сопутствующую открытию, дядя производит в уме, нередко даже не имея необходимости проверять свои выкладки или записывать доказательства на бумаге». Неизменная связка ключей, которую Пуанкаре машинально теребит пальцами во время своих раздумий, стала уже знаменитой. Ф. Массон в своем докладе назвал ее «акушерскими щипцами для идей».

И в своем кабинете Пуанкаре предпочитает не сидеть за столом, а мерить комнату шагами от стены к стене, слегка ссутулясь, выставив вперед крупную голову. В такие минуты наивысшего накала мысли, когда в зарницах смутных озарений пред ним рождаются видения его будущих открытий, а колоссальное внутреннее напряжение готово ежеминутно прорваться долгожданным результатом, он не принадлежит ни себе самому, ни кому бы то ни было еще. Обычная жизнь со всеми ее условностями и установлениями отступает на второй план. Дело порой доходит до несвойственных его натуре нарушений норм общепринятого человеческого общения.

Один известный финский математик проделал громадный путь до Парижа, чтобы посоветоваться со знаменитым французским ученым по интересующему его научному вопросу. Когда Пуанкаре доложили о приходе гостя, он даже не вышел из своего рабочего кабинета, а продолжал сосредоточенно ходить взад и вперед. Так продолжалось около трех часов. Все это время посетитель сидел в соседней комнате, отделенный от Пуанкаре только легкой портьерой, и внимал звуку его беспокойных шагов. Наконец портьеры раздвинулись, и в комнату просунулась голова знаменитого мэтра. Но вместо приветствия или полагающегося извинения гость услышал раздраженное: «Вы мне очень мешаете!» - и Пуанкаре снова исчез. Финский математик отбыл на родину, так и не встретившись с тем, ради кого он предпринял свое путешествие.

Никто из близко знавших Пуанкаре не расценил бы этот поступок как проявление грубости или недоброжелательства с его стороны. В разгар своего творческого процесса Пуанкаре предпочитал оставаться во внутреннем одиночестве, наедине с ускользающей истиной. В эти минуты он должен быть свободным от любых забот и обязательств. Только полностью раскрепощенный от всех земных тягот дух его мог воспарить в такие выси, куда не забиралось воображение ни одного из смертных. Сознание, что за портьерой его ожидает посетитель, давило на психику, сбивало с нужного настроя мысли. Даже разговоры и шум не мешали Пуанкаре работать, поскольку они не посягали на его внутреннюю жизнь, являлись чужеродным элементом его творческому процессу. Но засевшая в мозгу мысль о том, что его ждут, не давала покоя, тревожила и отвлекала от того главного, на чем он должен был сосредоточиться.

Этот случай дает возможность понять, ценой какого неимоверного внутреннего напряжения доставались ему всех удивлявшие интуитивные озарения. Это само по себе удивительное явление становится удивительным вдвойне, если вспомнить, что мозг его с неутомимостью безотказной машины творил без устали и отдыха. Пуанкаре мог бы повторить вслед за Бальзаком: «Моя жизнь состоит из одного монотонного труда, который разнообразится самим же трудом». Но лучше всего охарактеризовал непрестанность его умственной деятельности известный французский математик Эмиль Борель: «Можно сказать, хотя столь парадоксальное утверждение рискует быть плохо понятым, что его мозг работал чересчур непрерывно, чтобы иметь когда-либо отдых, необходимый для размышления».

Кажется просто невероятным, что столь суровый непрекращающийся труд не истощил вконец интеллектуальные силы ученого. Правда, на поздних фотографиях можно увидеть внешние следы многолетнего, огромного нервного напряжения, запечатлевшиеся на его облике. Но сколько знаменитых ученых не выдерживало громадной умственной нагрузки и сходило с творческого пути на время или навсегда! Достаточно вспомнить прискорбный случай с Ф. Клейном. В 46 лет подобный же творческий срыв испытал Д. Гильберт, которого, как пишут его биографы, покинули здоровье и естественный оптимизм ввиду полного упадка сил. С. Ковалевскую, по признанию ее дочери, настолько истощила работа, представленная на премию Бордена, что ей пришлось даже лечиться. Другой современник Пуанкаре, немецкий физик и химик В. Оствальд, в результате интенсивной научной деятельности перенес сильнейшее нервное расстройство и одно время хотел совсем «уйти со сцены». Известно, что М. Фарадей, закончив свои электрохимические исследования, в течение четырех лет был на грани помешательства, да так и не оправился окончательно. А Г. Дэви после изнурительной работы, завершившейся открытием щелочных металлов, постигло тяжелое нервное заболевание. Примеров таких в науке столь много, что подобные явления стали считаться чуть ли не неизбежными и типичными для любой творческой личности.

Но интеллект Пуанкаре, словно чудесная птица Феникс, после каждой испепеляющей творческой вспышки возрождается заново для следующего акта творения. И каждый раз кажется, что в нем проснулся огромный запас нетронутых еще сил, способных выдержать любое напряжение мысли. Откуда такая неистощимость созидательной энергии в невысоком, сутуловатом человеке, чуждающемся каких бы то ни было укрепляющих физических упражнений? Объяснить это можно только исключительно высокой природной одаренностью его интеллекта. Такая необычность не могла не волновать. Феномен Пуанкаре привлекает внимание медиков, психологов и физиологов еще при жизни великого творца. С 1897 года над ним ведет свои наблюдения доктор Тулуз. Им были предприняты медико-психологические обследования целого ряда выдающихся деятелей науки и искусства, в том числе химика М. Бертло, композитора Сен-Санса, скульптора Родена, писателей А. Додэ, Э. Гонкура, Э. Золя, поэта С. Малларме. Его публикации вызывали длительные и оживленные дискуссии, так как непосредственно касались широко обсуждавшегося тогда вопроса: гений - норма или патология? В 1910 году вышла книга Тулуза, посвященная Пуанкаре.

Интересно проведенное автором сопоставление творческих характеров писателя Э. Золя и ученого А. Пуанкаре. Золя принадлежал к типу волевых людей. Он принуждал себя к регулярной каждодневной работе независимо от своего настроения и состояния. Пуанкаре же, наоборот, не мог заставить себя работать, если не имел к этому внутренней склонности. Тем не менее, как мы знаем, он работал практически непрерывно. Около пятисот статей и книг написано им за всю его творческую жизнь. Больше чем по одной работе в месяц. Это говорит само за себя. И нужно еще учесть не только время непосредственного творения, но и неизбежную подготовительную работу: обмысливание новой проблемы и вхождение в нее. Но между выводами Тулуза и этими фактами нет противоречия. Пуанкаре действительно работал, не принуждая себя, только лишь по внутренней потребности. Но эта потребность творить жила в нем постоянно, словно чудесный неиссякаемый источник, непрерывно действующий творческий стимул.

Пуанкаре не только позволяет проводить над собой наблюдения, но и сам пристально всматривается, вникает, вслушивается в свой творческий процесс. Эта склонность к самоанализу и самонаблюдению нашла свое отражение в его знаменитом докладе, сделанном в 1908 году в Париже на заседании Психологического общества. «Математическое творчество» - так называется эта работа. В ней автор как бы раздваивается: выступает и как исследователь, и как объект исследования. Пуанкаре не придерживается широко распространенного в научных кругах мнения, что науке принадлежат лишь результаты исследования с их доказательствами, а пути подхода к истине остаются за ее пределами. Именно «процесс математической мысли» анализирует он в своем докладе. Особенно интересуют его внезапные интуитивные озарения, когда словно при вспышке молнии к ученому приходит непосредственное усмотрение истины. Счастливая мысль осеняет творца, как правило, не в то время, когда он трудится над проблемой, а после того, как, не найдя решения, он временно откладывает задачу, забывает о ней. Идея рождается либо благодаря ничтожному намеку, либо же без всякого видимого внешнего толчка, свидетельствуя о подсознательной работе, совершающейся в мозгу независимо от воли и сознания. Эти наблюдения Пуанкаре полностью совпадают с тем, что сообщали ранее Гельмгольц и Гаусс. Французский ученый иллюстрирует свои умозаключения примерами из раннего этапа своей научной деятельности, когда он работал над фуксовыми функциями. Примеры эти стали ныне хрестоматийными и много раз уже цитировались в литературе о научном творчестве.

Как и Гельмгольц, Пуанкаре отмечает, что «эти внезапные вдохновения происходят лишь после нескольких дней сознательных усилий, которые казались абсолютно бесплодными, когда предполагаешь, что не сделано ничего хорошего и когда кажется, что выбран совершенно ошибочный путь. Эти усилия, однако, не являются бесполезными, как это думают; они пустили в ход машину бессознательного, без них она не пришла бы в действие и ничего бы не произвела». Скачок воображения лишь венчает длительные и упорные размышления над проблемой. После Гельмгольца и Пуанкаре необходимость предварительной интенсивной работы, пусть даже не приносящей прямых результатов, была признана психологами, изучавшими условия совершения интуитивных открытий.

«„Я-подсознательное“ нисколько не является низшим по отношению к „я-сознательному“», - заключает Пуанкаре, - «оно не является чисто автоматическим, оно способно здраво судить, оно имеет чувство меры и чувствительность, оно умеет выбирать и догадываться. Да что говорить, оно умеет догадываться лучше, чем мое сознание, так как преуспевает там, где сознание этого не может». Не следует ли отсюда, что бессознательное выше, чем сознание? Именно к такому выводу пришел Эмиль Бутру, выступавший на заседании Психологического общества двумя месяцами раньше. Бессознательное, к которому он относит и религиозное чувство, является, по его мнению, источником наиболее тонкого, истинного познания. Только что доложенные Пуанкаре факты как будто бы тоже подтверждают идеалистические взгляды Бутру. Но Пуанкаре категоричен в своем неприятии этой чуждой для него точки зрения: «Я утверждаю, что не могу с этим согласиться».

Из книги Пуанкаре автора Тяпкин Алексей Алексеевич

Семья Пуанкаре Говорят, что дома - это портреты своей эпохи. В таком случае дом на улице Гиз в Нанси - одно из немногих исключений. Построенный ученым советником и врачом лотарингских герцогов, он выглядел ровесником XIX века, воплощением его буржуазной умеренности и

Из книги Жан-Поль Бельмондо. Профессионал автора Брагинский Александр Владимирович

ОСНОВНЫЕ ДАТЫ ЖИЗНИ И ДЕЯТЕЛЬНОСТИ АНРИ ПУАНКАРЕ 1854, 29 апреля - в городе Нанси (административный центр департамента Мёрт и Мозель, Франция) родился Анри Пуанкаре.1862, октябрь - поступил в 9-й класс лицея.1871, август - сдал экзамены на бакалавра словесности.1871, ноябрь - сдал

Из книги 100 рассказов о стыковке [Часть 2] автора Сыромятников Владимир Сергеевич

Феномен Бельмондо Мне довелось встретиться с Жан-Полем Бельмондо, когда тот приезжал в Москву весной 1989 года на премьеру фильма Клода Лелуша «Баловень судьбы».В ожидании, когда его позовут на сцену Дома кино, он сидел на диване в фойе и беседовал со «свитой», с русскими и

Из книги Чарли Чаплин автора Кукаркин Александр Викторович

13. Феномен Королёва В Королёве, как в большинстве людей, которых по полному праву можно причислить к гениям, проявились два основных качества: уникальный природный дар и удивительная работоспособность.Королёв по шкале ЛандауС ним не может сравниться никто, даже великий

Из книги На плантацию кактусов по визе невесты автора Селезнева-Скарборо Ирина

ФЕНОМЕН ЧАПЛИНИАДЫ Когда конец придет, Я вам, друзья, клянусь, Что в образе ином На землю я вернусь. Чарльз Чаплин (в роли Кальверо из «Огней рампы») Множество «звезд» различной величины и яркости прочерчивают свой путь на кинематографическом небосводе. Одни вспыхивают

Из книги Человек, который был Богом. Скандальная биография Альберта Эйнштейна автора Саенко Александр

Феномен усыновления Нет-нет, да и задумаюсь над феноменом усыновления американцами русских детей. Неужели, и вправду с жиру бесятся? Ведь это мнение самое распространенное у нас в народе. Но, конечно же, не с жиру. Это удовольствие очень дорогое. Тогда почему они берут

Из книги Янгель: Уроки и наследие автора Андреев Лев Вячеславович

Пуанкаре Конференция в Дюссельдорфе заканчивалась. Ничем не отличаясь от других, она сильно утомила Альберта, да и дурное предчувствие не покидало его с утра. Слава надоела, он в шутку говорил потом: «Я не мог начать лекцию. Мне не удалось разбудить студентов, уснувших,

Из книги Удивление перед жизнью автора Розов Виктор Сергеевич

Феномен личности При жизни, для тех, с кем был связан по роду деятельности, Михаил Кузьмич Янгель был не просто Главным конструктором, но и Человеком с большой буквы. Для всей остальной страны с двухсотпятидесятимиллионным населением (а тем более остальных землян)

Из книги Тот век серебряный, те женщины стальные… автора Носик Борис Михайлович

Из книги Україна - не Росія автора Кучма Леонид Данилович

Мария-феномен Листая однажды осенним парижским вечером тетрадку послевоенного «Возрождения», я наткнулся ан воспоминания Ариадны Тырковой-Вильямс о знаменитой ялтинской весне 1900 года.Ранней весной 1900 года Станиславский привез из Москвы в гости к Чехову Художественный

Из книги Григорий Перельман и гипотеза Пуанкаре автора Арсенов Олег Орестович

Мій феномен Ще до того, як стати директором «Південмашу», я був там секретарем парткому. Гадаю, що коли під час передвиборчої кампанії 1994 року ця обставина стала більш-менш загальновідомою, саме вона визначила вибір багатьох - вибір із протилежними знаками, певна річ.

Из книги Удивление перед жизнью. Воспоминания автора Розов Виктор Сергеевич

Часть 1 Тайна Пуанкаре -16- «Трудно отделаться от ощущения, что эти математические формулы существуют независимо от нас и обладают своим собственным разумом, что они умнее нас, умнее тех, кто открыл их, и что мы извлекаем из них больше, чем было в них первоначально

Из книги Главный финансист Третьего рейха. Признания старого лиса. 1923-1948 автора Шахт Яльмар

Гл. 3 Гипотеза Пуанкаре «Математика - не просто создание человеческого разума, она испытывает на себе сильное влияние тех культур, в рамках которых развивается. Математические "истины" зависят от людей ничуть не меньше, чем восприятие цвета или язык». Людвиг

Из книги Коко Шанель автора Надеждин Николай Яковлевич

Феномен Катаева Валентин Петрович Катаев, на мой взгляд, настоящий классик советской литературы.В 1955 году, когда я еще жил в бывшей келье Зачатьевского монастыря, в котором на два громадных коридора с двадцатью четырьмя кельями был один телефон. Однажды, пробежав

Из книги автора

Глава 26 Господин Пуанкаре 23 января 1924 года я прибыл по приглашению комитета Дауэса в Париж. Перед поездкой в Берлин члены комитета предпочли сначала обсудить экономическое положение Германии в Париже, и потребовалось мое присутствие для предоставления необходимой

Из книги автора

1. Феномен Коко Если попытаться вспомнить имена великих француженок, прославивших и себя, и свою родину, то в голову приходят самые разные имена. Здесь и писательница Шарлотта Бронте, и певица Эдит Пиаф, и женщина-учёный Мария Кюри. В этом довольно длинном списке имён

Выдающийся французский ученый Пуанкаре Анри был человеком, опередившим свое время. Ему принадлежит авторство 11 томов серьезнейших исследований, которые затрагивали едва ли не все математические области. В своих наработках ученый излагал теоретические основы, которые по сей день используются в научных исследованиях. Сегодня мы рассмотрим биографию французского математика и коротко познакомимся с его наработками.

Детство

Пуанкаре Анри родился 29 апреля 1854 года во Франции, в небольшом городе Сите Дюкаль около Нанси. Его отец Леон Пуанкаре был врачом и преподавателем медицинского факультета. Мать, Эжени Лануа, была домохозяйкой, и много времени посвящала детям. У Анри была сестра Алина. С раннего детства мальчик страдал рассеянностью. На протяжении всей жизни Анри эта проблема его сопровождала. Однако, когда он повзрослел, стало понятно, что рассеянность является свидетельством его удивительной способности погружаться в собственные мысли, размышлять и анализировать.

В раннем детстве Пуанкаре переболел дифтерией. Из-за осложнения, которое дала болезнь, он несколько месяцев даже не мог ходить и говорить. В этот тяжелый период он приучил себя обращать больше внимания на звуки. С годами эта особенность вылилась в то, что звуки у будущего ученого стали ассоциироваться с определенными цветами. У многих людей такая способность наблюдается в детстве, но уходит к зрелости. У Пуанкаре же она сохранилась на всю жизнь.

Домашнее образование

Постепенно мальчик поправился, начал говорить и ходить, однако физическая слабость его не покидала. Из-за пережитой болезни он стал робким и стеснительным. Первое образование он получил на дому благодаря А. Гинцелину, образованнейшему на тот момент человеку. Какой бы наукой они ни занимались, Анри редко делал записи и отлично считал в уме. Его не нужно было заставлять делать домашнее задание и загружать лишней информацией. Занятия Гинцелина с Анри выглядели как беседа взрослого человека с ребенком обо все на свете. Эти занятия поспособствовали еще большему развитию у Пуанкаре слуховой памяти. Болезненный робкий мальчуган быстро стал образованным и эрудированным парнем, обладающим индивидуальной манерой мышления. Кстати говоря, нелюбовь к письму у Анри сохранилась на всю жизнь.

Школа

Мальчик был настолько развитым, что его взяли сразу во второй класс лицея в Нанси. На тот момент классы считались от 10-го к 1-му, поэтому, если говорить более корректно, Анри поступил в 9-й класс. Педагоги лицея очень гордились им. Он без труда справлялся с любыми математическими задачами и писал интересные сочинения. Несмотря на то что преподаватель математики отмечал в Пуанкаре большой потенциал, будучи школьником, тот больше склонялся к гуманитарным предметам. В конечном итоге Анри перешел на гуманитарное отделение.

В июне 1870 года начались военные противостояния Франции с Пруссией, которые принесли французам много горя и разочарования. В эти времена отец Анри был в городе главным по медицине. Сын помогал ему в работе с ранеными солдатами. Он занимал должность помощника в амбулатории и личного секретаря Леона Пуанкаре.

События той ужасной войны развивались очень бурно и вызвали у шестнадцатилетнего юноши истинное потрясение. Свои переживания будущий ученый отобразил в диссертации «Как может нация возвыситься?», написанной по окончании обучения в гимназии.

Высшее образование

В 1871 году Пуанкаре Анри сдал вступительный экзамен на бакалавра по словесности с оценкой "хорошо". У него была возможность поступить на филологический факультет, но через три месяца молодой человек сдает экзамены на факультет естественных наук. Экзамен по математике он едва ли не провалил из-за своей рассеянности. Анри опоздал на него, и, растерявшись, стал рассказывать материал, который не касался поставленного ему вопроса. К неудаче парня отнеслись с пониманием, так как знали, что он способен на большее. Анри допустили к устному экзамену, на котором он показал себя во всей красе. В результате Пуанкаре получил степень бакалавра естественных наук. Во время обучения в классе элементарной математики он дополнительно изучал литературу и не единожды завоевывал первые места в математических состязаниях.

Политехническая и горная школы

Осенью 1873 года Анри стал студентом Политехнической школы. Первое время он был одним из лучших учеников, однако вскоре потерял свои позиции. Причиной тому стали несколько предметов, которые молодой ученый попросту не мог воспринимать всерьез. Среди них были черчение, рисование, а также военное искусство. Таким образом, Пуанкаре окончил школу не с самыми лучшими показателями. Позже он поступил в Горную школу, которая по тем временам считалась весьма престижным учебным заведением. Здесь Анри занимался кристаллографическими исследованиями.

В 1879 году молодой ученый защитил в Горной школе докторскую диссертацию, которая пришлась по душе профессору Сорбонны Г. Дарбу. Последний утверждал, что в одной работе Пуанкаре смог поместить столько материалов и идей, сколько хватило бы на несколько хороших диссертаций.

В апреле 1879 года Пуанкаре начал работать инженером в шахтах. Когда в одной из шахт произошел взрыв, вследствие которого погибли люди, Анри не побоялся спуститься на место взрыва, дабы исследовать причины и размеры трагедии. После защиты диссертации ученый начал преподавать математический анализ в Кане.

Семейная жизнь

Несмотря на безграничную любовь к науке, Пуанкаре находил время и для семьи. В 1881 году он женился на Луизе Полен д"Андеси. Свадьба была довольно пышной и состоялась в Париже. В 1887 году на свет появился долгожданный первенец, девочка, которую назвали Жанной. Через два года жена родила вторую девочку - Ивонну, а еще через год - третью, Генриетту. Спустя два года после рождения третьей дочери у четы Пуанкаре появился сын, которого назвали Лионом.

Семейная жизнь французского математика была переполнена любовью и покоем. «Гигантской работой мысли», которую ученый проделал на своем творческом пути, он во многом обязан своей супруге. Она всегда поддерживала в семье благоприятную атмосферу.

Математические заслуги

Серия заметок о фуксовых функциях, написанная Пуанкаре для французского журнала Compres Rendus, привлекла внимание именитых математиков (главным образом Вейерштрасса и Ковалевской) и вызвала в научном обществе неподдельный интерес. Следом за заметками последовало еще пять интересных работ на ту же тему.

Открыв в конечном итоге автоморфные функции, математик получил должность преподавателя в Парижском университете. Переехав во французскую столицу, двадцатисемилетний Пуанкаре занимается семьей, преподавательской деятельностью, и тесно сотрудничает с молодыми математиками, Эмилем Пикаром и Полем Аппелем. Наставником тройки новоиспеченных ученых становится профессор Эрмит.

Вскоре в Париже издается работа Пуанкаре Анри под названием «О кривых, определяемых дифференциальными уравнениями», которая состоит из четырех частей. Ранее данный метод оставался в научной среде без внимания. Ученый в этом трактате закладывает теорию устойчивости дифференциальных уравнений по малым параметрам и начальным условиям. В 1886 году герой нашего разговора возглавляет кафедру математической физики и теории вероятностей. А в 33 года он попадает в ряды французской Академии наук.

Изыскания ученого привели его к топологии. Он ввел в науку такие понятия, как число Бетти и фундаментальная группа, доказал формулу Эйлера-Пуанкаре и сформулировал общее понятие размерности. Французский математик сделал массу открытий в дифференциальной геометрии, алгебраической топологии, теории вероятностей и многих других направлениях математики. Ученый обнаружил связь между комформно-евклидовой моделью и задачами теории функций комплексного переменного. Это стало одним из первых серьезных приложений геометрии Лобачевского. Благодаря этому комформно-эвклидову модель часто называют «модель Пуанкаре - пространства Лобачевского». Кроме того Пуанкаре принадлежит авторство в работах по обоснованию принципа Дирихле.

С младых ногтей Пуанкаре интересовали звезды и законы, по которым свое движение осуществляют небесные тела. В 1889 году на свет вышел его трактат «Никогда не перейдут светила предписанных границ». Работа получила премию на международном конкурсе. Немного позже ученый написал трехтомный труд «Новые методы небесной механики». Кроме того, он опубликовал множество значимых трудов на тему устойчивости движения и фигур равновесия вращающейся гравитирующей жидкости. Ученый также создал метод интегральных инвариантов и многое другое. С 1896 года небесная механика вошла в его жизнь еще плотнее: Пуанкаре стал главой кафедры небесной механики в Сорбонском университете.

Физика

Огромным также было влияние французского ученого на физику. Несмотря на то что Пуанкаре и Эйнштейн пользуются разной степенью популярности, Пуанкаре задолго до Эйнштейна раскрыл в своих статьях основы такого понятия, как теория относительности. Главной из таких статей была работа «Измерение времени». Вместе с тем ученому очень нравилась работа со студентами. Он читал довольно объемный курс по физике, который в дальнейшем был опубликован в виде двенадцатитомной книги. В своих наработках он затрагивал все актуальные вопросы и предлагал свой подход к их решению. Физик и математик Пуанкаре предвосхитил многие умозаключения других ученых, живших позже.

В 1902 году вышла работа Пуанкаре Анри о науке, получившая название «Наука и гипотеза». Она вызвала огромный резонанс в научном кругу. Через два года, выступая с лекцией в Америке, Пуанкаре производит настоящий фурор. В статье под названием «Заметки Академии наук», вышедшей в 1905 году, он доказывает инвариантность уравнений Максвелла касательно преобразований Лоренца. М. Борн считал, что теория относительности не является заслугой какого-то определенного ученого. Это результат коллективной работы блистательных умов со всего мира. К ним, безусловно, относится и Пуанкаре Анри.

«Гипотеза Пуанкаре»

Французский математик и физик выдвинул за время своей деятельности немало интересных гипотез. Одна из них получила просто название «Гипотеза Пуанкаре». Она утверждала, что любое трехмерное, односвязное компактное многообразие безгранично гомеоморфно трехмерной сфере. Американский ученый Маркус Дю Сотой из Оксфорда считал эту гипотезу центральной проблемой как математики, так и физики. Он называл ее попыткой понять, какие формы может обретать вселенная. В конечном итоге гипотеза французского ученого попала в список «Семь Задач Тысячелетия». За решение каждой из этих задач институт Клэя выдвигал награду в 1 млн американских долларов.

Долгое время гипотеза Пуанкаре, сформулированная в 1904 году, не пользовалась особым вниманием. Первый интерес к ее разрешению был проявлен Генри Уайтхедом. Ученый даже объявил о своем доказательстве, но оно оказалось неверным. С тех пор многие пробовали доказать гипотезу, особенно в 60-х годах прошлого столетия. Огромное количество доказательств было опровергнуто.

В 2004 году российский ученый Григорий Перельман все-таки доказал гипотезу Пуанкаре. За это он был удостоен международной премии «Медаль Филдса». В 2010 году институт Клэя присудил российскому ученному обещанную награду, однако Перельман отказался от нее.

Американский математик Гамильтон также работал над доказательством, однако не довел дело до конца. В 2011 году Перельман настоял, чтобы награда института Клэя была присуждена Гамильтону, так как именно он создал математическую теорию, которой в своем доказательстве отчасти воспользовался Перельман.

Награды и звания

Заслуги Пуанкаре Анри, биография которого стала темой нашего сегодняшнего разговора, не единожды оценивались по достоинству. Он был обладателем таких премий:

  • Поиселе (в 1885 году).
  • Короля Швеции (в 1889 году).
  • Жана Рейно (Парижская Академия Наук, 1896 год).
  • Бойя (Венгерская Академия Наук, 1905 год).

Ученый был также награжден медалями Лондонского астрономического общества, Лондонского королевского общества и многими другими. Научные общества Британии, Франции и России считали честью членство Пуанкаре в своих рядах.

17 июля 1912 года великий ученый ушел из жизни. На тот момент ему было всего 58 лет. Пуанкаре был погребен на кладбище Монпарнас, в родовом склепе. В его честь были названы астероид, один из лунных кратеров, парижский Математический институт, парижская улица и множество математических терминов.

Заключение

Сегодня мы познакомились с жизнью и деятельностью выдающегося французского ученного. Благодаря тяге к знаниям, которая была заложена Пуанкаре с детства, он не только победил серьезные недуги, но и смог добиться феноменальных успехов в науке. Один этот факт заслуживает уважения.