Что изучает химическая термодинамика. Основные формулы термодинамики и молекулярной физики, которые вам пригодятся

Термодинамика - наука, которая изучает тепловые явления, происходящие в телах, не связывая их с молекулярным строением вещества.

В термодинамике считается, что все тепловые процессы в телах характеризуются только лишь макроскопическими параметрами - давлением, объёмом и температурой. А так как их невозможно применить к отдельно взятым молекулам или атомам, то, в отличие от молекулярно-кинетической теории, в термодинамике молекулярное строение вещества в тепловых процессах не учитывается.

Все понятия термодинамики сформулированы как обобщение фактов, наблюдаемых в ходе экспериментов. Из-за этого её называют феноменологической (описательной) теорией тепла.

Термодинамические системы

Термодинамика описывает тепловые процессы, происходящие в макроскопических системах. Такие системы состоят из огромного количества частиц - молекул и атомов, и называются термодинамическими.

Термодинамической системой можно считать любой объект, который можно увидеть невооружённым глазом или с помощью микроскопов, телескопов и других оптических приборов. Главное, чтобы размеры системы в пространстве и время её существования позволяли провести измерения её параметров - температуры, давления, массы, химического состава элементов и др., с помощью приборов, не реагирующих на воздействие отдельных молекул (манометров, термометров и др.).

Для химиков термодинамическкой системой является смесь химических веществ, взаимодействующих между собой в процессе химической реакции. Астрофизики назовут такой системой небесное тело. Смесь горючего с воздухом в автомобильном двигателе, земной шар, наше тело, пишущая ручка, тетрадь, станок и др. - это также термодинамические системы.

Каждая термодинамическая система отделена от окружающей среды границами. Они могут быть реальными - стеклянные стенки пробирки с химическим веществом, корпус цилиндра в двигателе и т.п. А могут быть и условными, когда, например, изучают образование облака в атмосфере.

Если такая система не обменивается с внешней средой ни энергией, ни веществом, то её называют изолированной или замкнутой .

Если же система обменивается с внешней средой энергией, но не обменивается веществом, то она называется закрытой .

Открытая система обменивается с внешней средой и энергией, и веществом.

Термодинамическое равновесие

Это понятие также введено в термодинамику, как обобщение результатов экспериментов.

Термодинамическим равновесием называют такое состояние системы, при котором все её макроскопические величины - температура, давление, объём и энтропия - не изменяются во времени, если система является изолированной. В такое состояние может самопроизвольно перейти любая замкнутая термодинамическая система, если остаются постоянными все внешние параметры.

Самый простой пример системы в состоянии термодинамического равновесия - термос с горячим чаем. Температура в нём одинакова в любой точке жидкости. Хотя термос можно назвать изолированной системой лишь приблизительно.

Любая замкнутая термодинамическая система самопроизвольно стремится перейти в термодинамическое равновесие, если не меняются внешние параметры.

Термодинамический процесс

Если меняется хотя бы один из макроскопических параметров, то говорят, что в системе происходит термодинамический процесс . Такой процесс может возникнуть, если изменяются внешние параметры или система начинает получать или передавать энергию. В результате она переходит в другое состояние.

Вспомним пример с чаем в термосе. Если мы опустим в чай кусочек льда и закроем термос, то сразу же появится разница в температурах в разных частях жидкости. Жидкость в термосе будет стремиться к выравниванию температур. Из областей с более высокой температурой тепло будет передаваться туда, где температура ниже. То есть, будет происходить термодинамический процесс. В конце концов, температура чая в термосе снова станет одинаковой. Но она уже будет отличаться от первоначальной температуры. Состояние системы изменилось, так как изменилась её температура.

Термодинамический процесс происходит, когда ночью остывает песок, нагретый на пляже в жаркий день. К утру его температура понижается. Но как только взойдёт солнце, процесс нагревания начнётся снова.

Внутренняя энергия

Одно из главных понятий термодинамики - внутренняя энергия .

Все макроскопические тела обладают внутренней энергией, которая является суммой кинетических и потенциальных энергий всех частиц (атомов и молекул), из которых состоит тело. Эти частицы взаимодействуют только между собой и не взаимодействуют с частицами окружающей среды. Внутренняя энергия зависит от кинетической и потенциальной энергии частиц и не зависит от положения самого тела.

U = E k +E p

Внутренняя энергия изменяется с изменением температуры. Молекулярно-кинетическая теория объясняет это изменением скорости движения частиц вещества. Если температура тела растёт, то растёт и скорость движения частиц, расстояние между ними становится больше. Следовательно, увеличивается их кинетическая и потенциальная энергия. При понижении температуры происходит обратный процесс.

Для термодинамики важнее не величина внутренней энергии, а её изменение. А изменить внутреннюю энергию можно с помощью процесса теплопередачи или совершая механическую работу.

Изменение внутренней энергии механической работой

Бенджамин Румфорд

Внутреннюю энергию тела можно изменить, совершив над ней механическую работу. Если работа совершается над телом, то механическая энергия превращается во внутреннюю энергию. А если работу совершает тело, то его внутренняя энергия превращается в механическую.

Почти до конца XIX века считалось, что существует невесомое вещество - теплород, которое передаёт тепло от тела к телу. Чем больше теплорода втекает в тело, тем теплее оно будет, и наоборот.

Однако в 1798 г. англо-американский учёный граф Бенджамин Румфорд стал сомневаться в теории теплорода. Причиной тому были нагревания стволов пушек при сверлении. Он предположил, что причиной нагревания является механическая работа, которая совершается во время трения сверла о ствол.

И Румфорд провёл эксперимент. Чтобы увеличить силу трение, взяли тупое сверло, а сам ствол поместили в бочку с водой. К концу третьего часа сверления вода в бочке закипела. Это означало, что ствол получил тепло при совершении механической работы над ним.

Теплопередача

Теплопередачей называют физический процесс передачи тепловой энергии (теплоты) от одного тела к другому либо при непосредственном контакте, либо через разделяющую перегородку. Как правило, теплота передаётся от более тёплого тела к более холодному. Это процесс заканчивается, когда система приходит в состояние термодинамического равновесия.

Энергия, которую получает или отдаёт тело при теплопередаче, называется количеством теплоты .

По способу передачи теплоты теплообмен можно разделить на 3 вида: теплопроводность, конвенция, тепловое излучение.

Теплопроводность

Если между телами или частями тел существует температурная разница, то между ними будет происходить процесс теплопередачи. Теплопроводностью называют процесс переноса внутренней энергии от более нагретого тела (или его части) к менее нагретому телу (или его части).

К примеру, нагрев на огне один конец стального прута, через некоторое время мы почувствуем, что и другой его конец также становится тёплым.

Стеклянную палочку, один конец которой раскалён, мы легко держим за другой конец, не обжигаясь. Но если мы попробуем проделать такой же эксперимент с железным прутом, у нас ничего не получится.

Разные вещества по-разному проводят тепло. Каждое из них имеет свой коэффициент теплопроводности , или удельной проводимости , численно равный количеству теплоты, которая проходит через образец толщиной 1 м, площадью 1 м 2 за 1 секунду. За единицу температуры принимают 1 К.

Лучше всего проводят тепло металлы. Это их свойство мы используем в быту, готовя пищу в металлических кастрюлях или на сковородках. А вот их ручки не должны нагреваться. Поэтому их делают из материалов с плохой теплопроводностью.

Теплопроводность жидкостей меньше. А газы обладают слабой теплопроводностью.

Мех животных также плохо проводит тепло. Благодаря этому они не перегреваются в жаркую погоду и не замерзают в холодную.

Конвенция

При конвенции теплота передаётся струями и потоками газа или жидкости. В твёрдых телах конвенции нет.

Как возникает конвенция в жидкости? Когда мы ставим на огонь чайник с водой, нижний слой жидкости нагревается, его плотность уменьшается, он движется вверх. Его место занимает более холодный слой воды. Через какое-то время он тоже нагреется и тоже поменяется местами с более холодным слоем. И т.д.

Подобный процесс происходит и в газах. Не случайно батареи отопления размещают в нижней части комнаты. Ведь нагретый воздух всегда поднимается в верхнюю часть комнаты. А нижний, холодный, наоборот, опускается. Затем он нагревается также и вновь поднимается, а верхний слой за это время остывает и опускается.

Конвенция бывает естественная и принудительная.

Естественная конвенция постоянно происходит в атмосфере. В результате этого происходят постоянные перемещения тёплых воздушных масс вверх, а холодных - вниз. В результате возникает ветер, облака и другие природные явления.

Когда естественной конвенции недостаточно, применяю принудительную конвенцию. Например, потоки тёплого воздуха перемещают в комнате с помощью лопастей вентилятора.

Тепловое излучение

Солнце нагревает Землю. При этом не происходит ни теплопередачи, ни конвенции. Так почему же тела получают тепло?

Дело в том, что Солнце является источником теплового излучения.

Тепловое излучение - это электромагнитное излучение, возникающее за счёт внутренней энергии тела. Все окружающие нас тела излучают тепловую энергию. Это может быть видимое световое излучение настольной лампы, или источники невидимых ультрафиолетовых, инфракрасных или гамма-лучей.

Но тела не только излучают тепло. Они его также и поглощают. Одни в большей степени, другие в меньшей. Причём тёмные тела и нагреваются, и охлаждаются быстрее, чем светлые. В жаркую погоду мы стараемся надеть светлую одежду, потому что она поглощает меньше тепла, чем одежда тёмных тонов. Автомобиль тёмного цвета нагревается на солнце гораздо быстрее, чем стоящий с ним рядом автомобиль, имеющий светлую окраску.

Это свойство веществ по-разному поглощать и излучать тепло используется при создании систем ночного видения, систем самонаведения ракет на цель и др.



Добавить свою цену в базу

Комментарий

Термодинамика (греч. θέρμη – «тепло», δύναμις – «сила») – раздел физики, изучающий наиболее общие свойства макроскопических систем и способы передачи и превращения энергии в таких системах.

В термодинамике изучаются состояния и процессы, для описания которых можно ввести понятие температуры. Термодинамика (Т.) – это феноменологическая наука, опирающаяся на обобщения опытных фактов. Процессы, происходящие в термодинамических системах, описываются макроскопическими величинами (температура, давление, концентрации компонентов), которые вводятся для описания систем, состоящих из большого числа частиц, и не применимы к отдельным молекулам и атомам, в отличие, например, от величин, вводимых в механике или электродинамике.

Современная феноменологическая термодинамика является строгой теорией, развиваемой на основе нескольких постулатов. Однако связь этих постулатов со свойствами и законами взаимодействия частиц, из которых построены термодинамические системы, даётся статистической физикой. Статистическая физика позволяет выяснить также и границы применимости термодинамики.

Законы термодинамики носят общий характер и не зависят от конкретных деталей строения вещества на атомарном уровне. Поэтому термодинамика успешно применяется в широком круге вопросов науки и техники, таких как энергетика, теплотехника, фазовые переходы, химические реакции, явления переноса и даже чёрные дыры. Термодинамика имеет важное значение для самых разных областей физики и химии, химической технологии, аэрокосмической техники, машиностроения, клеточной биологии, биомедицинской инженерии, материаловедения и находит своё применение даже в таких областях, как экономика.

Важные годы в истории термодинамики

  • Зарождение термодинамики как науки связано с именем Г. Галилея (G. Galilei), корый ввёл понятие температуры и сконструировал первый прибор, реагирующий на изменения температуры окружающей среды (1597).
  • Вскоре Г. Д. Фаренгейт (G. D. Fahrenheit, 1714), Р. Реомюр (R. Reaumur, 1730} и А. Цельсий (A. Celsius, 1742) создали температурные шкалы в соответствии с этим принципом.
  • Дж.Блэк (J. Black) в 1757 году уже ввёл понятия скрытой теплоты плавления и теплоемкости (1770). А Вильке (J. Wilcke, 1772) ввёл определение калории как количества тепла, необходимого для нагревания 1 г воды на 1 °С.
  • Лавуазье (A. Lavoisier) и Лаплас (P. Laplace) в 1780 сконструировали калориметр (см. Калориметрия) и впервые экспериментально определили уд. теплоёмкости ряда веществ.
  • В 1824 С. Карно (N. L, S. Carnot) опубликовал работу, посвящённую исследованию принципов работы тепловых двигателей.
  • Б. Клапейрон (В. Clapeyron) ввёл графическое представление термодинамических процессов и развил метод бесконечно малых циклов (1834).
  • Г. Хельмгольц (G. Helmholtz) отметил универсальный характер закона сохранения энергии (1847). Впоследствии Р. Клаузиус (R. Clausius) и У. Томсон (Кельвин; W. Thomson) систематически развили теоретический аппарат термодинамики, в основу которого положены первое начало термодинамики и второе начало термодинамики.
  • Развитие 2-го начала привело Клаузиуса к определению энтропии (1854) и формулировке закона возрастания энтропии (1865).
  • Начиная с работ Дж. У. Гиббса (J. W. Gibbs, 1873), предложившего метод термодинамических потенциалов, развивается теория термодинамического равновесия.
  • Во 2-й пол. 19 в. проводились исследования реальных газов. Особую роль сыграли эксперименты Т. Эндрюса (Т. Andrews), который впервые обнаружил критическую точку системы жидкость-пар (1861), её существование предсказал Д. И. Менделеев (1860).
  • К концу 19 в. были достигнуты большие успехи в получении низких температур, в результате чего были ожижены О2, N2 и Н2.
  • В 1902 Гиббс опубликовал работу, в которой все основные термодинамические соотношения были получены в рамках статистической физики.
  • Связь между кинетич. свойствами тела и его термодинамич. характеристиками была установлена Л. Онсагером (L. Onsager, 1931).
  • В 20 в. интенсивно исследовали термодинамику твёрдых тел, а также квантовых жидкостей и жидких кристаллов, в которых имеют место многообразные фазовые переходы.
  • Л. Д. Ландау (1935-37) развил общую теорию фазовых переходов, основанную на концепции спонтанного нарушения симметрии.

Разделы термодинамики

Современную феноменологическую термодинамику принято делить на равновесную (или классическую) термодинамику, изучающую равновесные термодинамические системы и процессы в таких системах, и неравновесную термодинамику, изучающую неравновесные процессы в системах, в которых отклонение от термодинамического равновесия относительно невелико и ещё допускает термодинамическое описание.

Равновесная (или классическая) термодинамика

В равновесной термодинамике вводятся такие переменные, как внутренняя энергия, температура, энтропия, химический потенциал. Все они носят название термодинамических параметров (величин). Классическая термодинамика изучает связи термодинамических параметров между собой и с физическими величинами, вводимыми в рассмотрение в других разделах физики, например, с гравитационным или электромагнитным полем, действующим на систему. Химические реакции и фазовые переходы также входят в предмет изучения классической термодинамики. Однако изучение термодинамических систем, в которых существенную роль играют химические превращения, составляет предмет химической термодинамики, а техническими приложениями занимается теплотехника.

Классическая термодинамика включает в себя следующие разделы:

  • начала термодинамики (иногда также называемые законами или аксиомами)
  • уравнения состояния и свойства простых термодинамических систем (идеальный газ, реальный газ, диэлектрики и магнетики и т. д.)
  • равновесные процессы с простыми системами, термодинамические циклы
  • неравновесные процессы и закон неубывания энтропии
  • термодинамические фазы и фазовые переходы

Кроме этого, современная термодинамика включает также следующие направления:

  • строгая математическая формулировка термодинамики на основе выпуклого анализа
  • неэкстенсивная термодинамика

В системах, не находящихся в состоянии термодинамического равновесия, например, в движущемся газе, может применяться приближение локального равновесия, в котором считается, что соотношения равновесной термодинамики выполняются локально в каждой точке системы.

Неравновесная термодинамика

В неравновесной термодинамике переменные рассматриваются как локальные не только в пространстве, но и во времени, то есть в её формулы время может входить в явном виде. Отметим, что посвящённая вопросам теплопроводности классическая работа Фурье «Аналитическая теория тепла» (1822) опередила не только появление неравновесной термодинамики, но и работу Карно «Размышления о движущей силе огня и о машинах, способных развивать эту силу» (1824), которую принято считать точкой отсчёта в истории классической термодинамики.

Основные понятия термодинамики

Термодинамическая система – тело или группа тел, находящихся во взаимодействии, мысленно или реально обособленные от окружающей среды.

Гомогенная система – система, внутри которой нет поверхностей, разделяющих отличающиеся по свойствам части системы (фазы).

Гетерогенная система – система, внутри которой присутствуют поверхности, разделяющие отличающиеся по свойствам части системы.

Фаза – совокупность гомогенных частей гетерогенной системы, одинаковых по физическим и химическим свойствам, отделённая от других частей системы видимыми поверхностями раздела.

Изолированная система – система, которая не обменивается с окружающей средой ни веществом, ни энергией.

Закрытая система – система, которая обменивается с окружающей средой энергией, но не обменивается веществом.

Открытая система – система, которая обменивается с окружающей средой и веществом, и энергией.

Совокупность всех физических и химических свойств системы характеризует её термодинамическое состояние . Все величины, характеризующие какое-либо макроскопическое свойство рассматриваемой системы – параметры состояния . Опытным путем установлено, что для однозначной характеристики данной системы необходимо использовать некоторое число параметров, называемых независимыми ; все остальные параметры рассматриваются как функции независимых параметров. В качестве независимых параметров состояния обычно выбирают параметры, поддающиеся непосредственному измерению, например температуру, давление, концентрацию и т.д. Всякое изменение термодинамического состояния системы (изменения хотя бы одного параметра состояния) есть термодинамический процесс .

Обратимый процесс – процесс, допускающий возможность возвращения системы в исходное состояние без того, чтобы в окружающей среде остались какие-либо изменения.

Равновесный процесс – процесс, при котором система проходит через непрерывный ряд равновесных состояний.

Энергия – мера способности системы совершать работу; общая качественная мера движения и взаимодействия материи. Энергия является неотъемлемым свойством материи. Различают потенциальную энергию, обусловленную положением тела в поле некоторых сил, и кинетическую энергию, обусловленную изменением положения тела в пространстве.

Внутренняя энергия системы – сумма кинетической и потенциальной энергии всех частиц, составляющих систему. Можно также определить внутреннюю энергию системы как её полную энергию за вычетом кинетической и потенциальной энергии системы как целого.

Формы перехода энергии

Формы перехода энергии от одной системы к другой могут быть разбиты на две группы.

  1. В первую группу входит только одна форма перехода движения путем хаотических столкновений молекул двух соприкасающихся тел, т.е. путём теплопроводности (и одновременно путём излучения). Мерой передаваемого таким способом движения является теплота. Теплота есть форма передачи энергии путём неупорядоченного движения молекул.
  2. Во вторую группу включаются различные формы перехода движения, общей чертой которых является перемещение масс, охватывающих очень большие числа молекул (т.е. макроскопических масс), под действием каких-либо сил. Таковы поднятие тел в поле тяготения, переход некоторого количества электричества от большего электростатического потенциала к меньшему, расширение газа, находящегося под давлением и др. Общей мерой передаваемого такими способами движения является работа – форма передачи энергии путём упорядоченного движения частиц.

Теплота и работа характеризуют качественно и количественно две различные формы передачи движения от данной части материального мира к другой. Теплота и работа не могут содержаться в теле. Теплота и работа возникают только тогда, когда возникает процесс, и характеризуют только процесс. В статических условиях теплота и работа не существуют. Различие между теплотой и работой, принимаемое термодинамикой как исходное положение, и противопоставление теплоты работе имеет смысл только для тел, состоящих из множества молекул, т.к. для одной молекулы или для совокупности немногих молекул понятия теплоты и работы теряют смысл. Поэтому термодинамика рассматривает лишь тела, состоящие из большого числа молекул, т.е. так называемые макроскопические системы.

Три начала термодинамики

Начала термодинамики – совокупность постулатов, лежащих в основе термодинамики. Эти положения были установлены в результате научных исследований и были доказаны экспериментально. В качестве постулатов они принимаются для того, чтобы термодинамику можно было построить аксиоматически.

Необходимость начал термодинамики связана с тем, что термодинамика описывает макроскопические параметры систем без конкретных предположений относительно их микроскопического устройства. Вопросами внутреннего устройства занимается статистическая физика.

Начала термодинамики независимы, то есть ни одно из них не может быть выведено из других начал. Аналогами трех законов Ньютона в механике, являются три начала в термодинамике, которые связывают понятия «тепло» и «работа»:

  • Нулевое начало термодинамики говорит о термодинамическом равновесии.
  • Первое начало термодинамики – о сохранении энергии.
  • Второе начало термодинамики – о тепловых потоках.
  • Третье начало термодинамики – о недостижимости абсолютного нуля.

Общее (нулевое) начало термодинамики

Общее (нулевое) начало термодинамики гласит, что два тела находятся в состоянии теплового равновесия, если они могут передавать друг другу теплоту, но этого не происходит.

Нетрудно догадаться, что два тела не передают друг другу теплоту в том случае, если их температуры равны. Например, если измерить температуру человеческого тела при помощи термометра (в конце измерения температура человека и температура градусника будут равны), а затем, этим же термометром измерить температуру воды в ванной, и при этом окажется, что обе температуры совпадают (наблюдается тепловое равновесие человека с термометром и термометра с водой), можно говорить о том, что человек находится в тепловом равновесии с водой в ванной.

Из сказанного выше, можно сформулировать нулевое начало термодинамики следующим образом: два тела, находящиеся в тепловом равновесии с третьим, также находятся в тепловом равновесии между собой.

С физической точки зрения нулевое начало термодинамики устанавливает точку отсчета, поскольку, между двумя телами, которые имеют одинаковую температуру, тепловой поток отсутствует. Другими словами, можно сказать, что температура есть не что иное, как индикатор теплового равновесия.

Первое начало термодинамики

Первое начало термодинамики есть закон сохранения тепловой энергии, утверждающий, что энергия никуда не девается бесследно.

Система может либо поглощать, либо выделять тепловую энергию Q, при этом система выполняет над окружающими телами работу W (или окружающие тела выполняют работу над системой), при этом внутренняя энергия системы, которая имела начальное значение Uнач, будет равна Uкон:

Uкон-Uнач = ΔU = Q-W

Тепловая энергия, работа и внутренняя энергия определяют общую энергию системы, которая является постоянной величиной. Если системе передать (забрать) некое кол-во тепловой энергии Q, при отсутствии работы кол-во внутренней энергии системы U, увеличится (уменьшится) на Q.

Второе начало термодинамики

Второе начало термодинамик гласит, что тепловая энергия может переходить только в одном направлении – от тела с более высокой температурой, к телу, с более низкой температурой, но не наоборот.

Третье начало термодинамики

Третье начало термодинамики гласит, что любой процесс, состоящий из конечного числа этапов, не позволит достичь температуры абсолютного нуля (хотя к нему можно существенно приблизиться).

Введение

Дисциплины техническая термодинамика и теория тепло - и массообмена формируют теоретическую базу для освоения дисциплин специального цикла по направлениям "Энергомашиностроение" и "Теплоэнергетика".

В первой части рассматриваются основные понятия термодинамики, приложение первого закона термодинамики к закрытым, открытым термодинамическим системам и системам с переменной массой. Изучаются равновесные состояния и квазиравновесные процессы в макроскопических системах. Значительное внимание уделяется второму закону термодинамики и его применению к необратимым процессам, вскрываются причины необратимости и ее влияние на потерю работоспособности (эксергии) системы. Подробно рассматриваются газовые циклы и реактивные двигатели. Уделяется внимание условиям равновесия в однородной и двухфазной системах, фазовым переходам при плоской и искривленной границах раздела фаз. Приводятся основные положения теории образования новой фазы. Рассматриваются свойства реальных газов и паров, вопросы дросселирования реальных газов и паров, процессы, протекающие в паре и влажном воздухе. Представлен достаточно подробный материал по паровым и комбинированным циклам теплоэнергетических установок, рассматриваются способы повышения их эффективности, проведен анализ циклов паротурбинной и газотурбинной установок с учетом необратимых потерь с помощью энтропийного и эксергетического методов. Вопросы непосредственного преобразования теплоты в электрическую энергию изложены в конспективной форме на основе упрощенных тепловых схем без рассмотрения состояния плазмы и процессов в ней. Даются основы термоэлектрического генератора. Рассматриваются идеальные циклы холодильных машин, тепловых насосов и методы ожижения газов. В разделе "Основы химической термодинамики" излагаются законы и положения, касающиеся процессов превращения одних веществ в другие. Даны основные понятия неравновесной термодинамики. В приложении Iприводятся программы расчета на ЭВМ газотурбинной установки с регенерацией теплоты и паротурбинной установки с оптимизацией параметров рабочего тела на примере геотермальной тепловой электрической станции. Приводится список литературы для более подробного изучения законов, методов и истории развития термодинамики.

Вторая часть курса содержит основные законы и положения теории тепло- и массообмена в природе и включает такие разделы как стационарная и нестационарная теплопроводность, конвективный теплообмен в однородных средах, теплоотдача при изменении агрегатного состояния вещества, массоперенос в двухкомпонентных средах, лучистый теплообмен, основы расчета теплообменных аппаратов рекуперативного типа.

Основные явления тепло- и массопереноса, имеющие место в природе, рассмотрены достаточно подробно на основе упрощенных физических моделей с получением расчетных формул. Такой академический подход, на наш взгляд, способствует развитию у студента творческого мышления: он видит, как создается физическая модель, как она упрощается путем введения обоснованных допущений для получения аналитического решения.

Так как в настоящее время трудно представить решение научных и инженерных задач без использования ЭВМ, то в разделе "Численные методы решения задач теплопроводности" показывается, как создаются уравнения в конечно-разностной форме для различных “узлов“ изучаемого тела. Рассматриваются вопросы устойчивости разностных схем. В приложении IIприводятся программы расчета двумерного температурного поля итерационным и матричным методами, а также текст программы расчета теплообменного аппарата для выполнения курсовой работы по методике .

Список литературы, приведенный в конце лекций, позволяет студенту более глубоко изучить интересующие его вопросы, которые в ряде случаев изложены в конспективной форме.

Часть I. Техническая термодинамика

1. Основные понятия термодинамики

Термодинамика - это наука, изучающая законы превращения энергии в различных процессах, сопровождающихся тепловыми эффектами. Термодинамика - дедуктивная наука: она базируется на основных законах природы (первом и втором началах термодинамики) и носит феноменологический характер, привлекая для своих исследований опытные данные.

Краткий исторический очерк развития термодинамики

Термодинамика как наука возникла в начале XIXвека. Основные задачи, которые она должна была решать - это установление количественной связи между теплотой и работой и повышение тепловой эффективности паровых машин, которые стали широко использоваться в промышленности. В 1824 году французский инженер Сади Карно опубликовал трактат “ Размышления о движущей силе огня и машинах, способных развивать эту силу“11. В этом научном труде он впервые доказывает, что “движущая сила огня“ (работа) зависит от величины температуры “горячего” и “холодного “ источников теплоты, и что более эффективными являются паровые машины высокого давления, в которых по его словам “...большее падение “теплорода” (под теплородом понимали все проникающее вещество)”. Еще тогда он пишет о причинах потери движущей силы: “...от бесполезного восстановления равновесия теплорода “. Таким образом, в работе Карно были заложены основные положения первого и второго законов термодинамики.

В 1842 году Роберт Майер устанавливает связь между теплотой и работой, определив механический эквивалент теплоты Джемс Джоуль в 1843 году, проведя уникальный эксперимент, находит тепловой эквивалент работывеличина которого до настоящего времени остается практически неизменной. Работы Майера и Джоуля устанавливают частный случай первого начала термодинамики - закона отражающего количественную сторону сохранения и превращения энергии.

Рудольф Клаузиус в 1854 году, рассматривая обратимый круговой процесс, вводит в термодинамику новую функцию состояния - энтропию S и тем самым устанавливает второй закон термодинамики для обратимых процессовПозднее Макс Планк в своей докторской диссертации показывает, что энтропия может быть использована при анализе необратимых процессов (с чем был не согласен Роберт Кирхгоф)14. В общем случае второе начало имеет види характеризует качественную сторону в процессах превращения энергии.

Виллиам Томсон (лорд Кельвин) вводит понятие абсолютной (термодинамической) температуры, которая является термодинамическим потенциалом.

Джозайя Виллард Гиббс создает новый метод термодинамических исследований - метод термодинамических потенциалов, устанавливает условия термодинамического равновесия. Развивает теорию фазовых переходов (правило фаз Гиббса).

В 1906 году Вальтер Герман Нернст (1864-1941) на основании опытных данных открывает третий закон термодинамики (теорема Нернста). Согласно этой теореме при температурах, стремящихся к абсолютному нулю, равновесные изотермические процессы протекают без изменения энтропии, то есть . В этом случае энтропия перестает быть функцией состояния и стремится к некоторой постоянной величине, не зависящей от параметров состояния.

В работах Д.И.Менделеева впервые используется “критическая температура”, при которой коэффициент поверхностного натяжения равен нулю.

В.А. Михельсон и Б.Б. Голицын внесли значительный вклад в термодинамику излучения.

Большой вклад в развитие термодинамики внесли также русские ученые: Д.П. Коновалов и Н.С. Курнаков (термодинамические методоы в физической химии), Н.Н. Боголюбов и М.А. Леонтович (статистическая термодинамика, неравновесные состояния), Л.Д. Ландау (теория сверхтекучести), В.К. Семенченко (термодинамическая теория растворов).

Термодинамическая система

Под термодинамической системой понимают совокупность макротел, находящихся между собой и окружающей средой в тепловом и механическом взаимодействии. Термодинамическая система (ТС) может быть закрытой (с подвижной или неподвижной границами) и открытой, когда через нее проходит поток массы. Если ТС не обменивается теплотой с окружающей средой, то такая система называется адиабатической. ТС может быть гомогенной и гетерогенной. В гомогенной системе свойства вещества остаются неизменными во всех точках или плавно изменяются, например, в поле гравитационных или иных массовых сил. Если ТС состоит из подсистем с различными физическими свойствами, то такая система называется гетерогенной. В этом случае считают, что физические свойства на границе подсистем изменяются скачком. В действительности изменение свойств происходит на длине свободного пробега молекулы.

Термодинамический метод исследования

Термодинамика рассматривает системы, состоящие из большого, но конечного числа частиц, она не изучает процессы на молекулярном уровне и оперирует макровеличинами - термодинамическими параметрами.

Термодинамический процесс

Совокупность последовательных состояний, проходящих термодинамической системой, называется термодинамическим процессом. Если ТС проходит практически равновесные состояния, то такой процесс называется квазистатическим. В пределе, когда процесс протекает бесконечно медленно, то имеем равновесный или обратимый процесс. Вообще под обратимым понимают такой процесс, когда при совершении прямого и обратного процесса ТС приходит в исходное состояние, а в окружающей среде не происходит ни каких изменений. В диаграммах состояния можно изобразить только квазистатические или равновесные процессы. Под квазистатическим процессом понимают такой процесс, когда скорость процесса намного меньше скорости релаксации

где a - любой термодинамический параметр (p , T , v ) ; - время; - время релаксации - время, за которое во всех точках ТС установится термодинамическое равновесие, то есть будем иметь одинаковые физические свойства (для газовсекунд).

Параметры термодинамической системы

Это макровеличины, характеризующие физическое состояние термодинамической системы. К ним относятся температураT , давление -p , объем -V (термические параметры).

Температура является одним из основных термических параметров. Температура есть мера нагретости тела. Температура тела, измеренная термометром, называется эмпирической (t ). К понятию абсолютной температуры (T ) приводит кинетическая теория газов. Между средней кинетической энергией поступательного движения молекул и температурой существует связь

(1.2)

где m - масса молекулы;
- средняя скорость поступательного движения молекул;k = 1,38 10 - 23 - постоянная Больцмана (универсальная газовая постоянная на одну молекулу газа) ;R 0 = 8314- универсальная газовая постоянная;N 0 = 6,022810 26 - число Авогадро (число молекул в одном киломоле). Из (1.2) следует, чтоT является статистической величиной, характеризующей состояние большого числа молекул. Между абсолютной и эмпирической температурой, измеренной в градусах Цельсия, существует зависимость

(1.3)

Давление , как и температура, - статистическая величина. Из курса молекулярной физики известно, что давление газа на стенки сосуда можно рассчитать по формуле

H/м 2 (1.4)

где n =N 0 /V  - число молекул, заключенных в объеме одного киломоля;

V  = 22,4 м 3 / кмоль - объем одного киломоля при нормальных условиях ( p н = 760 мм. рт. ст. = 1,01310 5 Па,t н = 0 С) ;- коэффициент сжимаемости.

С учетом (1.2) перепишем (1.4) в виде

. (1.5)

Для идеального газа, молекулы которого представляются в виде материальных точек, имеющих массу и не имеющих объема, а взаимодействие осуществляется только за счет упругих соударений (= 1), можно написать

pV =R 0 T . (1.6)

Выражение (1.6) является термическим уравнением состояния идеального газа для одного киломоля. Для М киломолей

pV = MR 0 T . (1.7)

Уравнение состояния в форме (1.7) носит название Клапейрона-Менделеева.

Так как масса газа

G =M , (1.8)

где - молекулярная масса газа, кг/ кмоль, аR = R 0 / , то (1.7) можно переписать в форме Клапейрона

pV = GRT . (1.9)

Разделив уравнение (1.9) на массу газа, получим

pv = RT ,

где v = V / G - удельный объем газа, м 3 /кг. Удельный объем газа связан с плотностью соотношением = 1/ v , тогда

p = RT . (1.10)

Таким образом, чем выше плотность и температура идеального газа, тем больше давление. Давление, входящее в уравнение состояния, называется абсолютным и измеряется в Паскалях (Па=Н/м 2). Если давление газа в сосуде выше давления окружающей средыр ос (барометрического давления), то абсолютное давление

р=р ман + р ос , (1.11)

где р ман изб - давление измеренное манометром (манометр измеряет избыточное давление между давлением в сосуде и окружающей средой).

В случае, когда давление газа в сосуде меньше давления окружающей среды, то используется вакууметр, тогда

р=р ос - р вак. (1.12)

Сказанное может быть представлено в графическом виде (см. рис.1.1).

Удельный объем так же какТ ир , характеризует физичское состояние тела

(1.13)

Термодинамические параметры (ТП) могут быть экстенсивными и интенсивными. К экстенсивным параметрам относятся внутренняя энергия газа U , энтальпияI = U + pV , энтропияS . Эти параметры обладают свойствами аддитивности (их можно складывать). Интенсивными параметрами являютсяp , T , удельный объемv - они не обладают свойствами аддитивности.

Законы термодинамики называют также ее началами. На самом деле начало термодинамики представляет собой не что иное, как совокупность тех или иных постулатов, которые лежат в основе соответствующего раздела молекулярной физики. Данные положения устанавливали в течение научных исследований. В то же время они были доказаны экспериментальным путем. Почему же законы термодинамики принимают за постулаты? Все дело в том, что таким образом термодинамику можно строить аксиоматическим путем.

Основные законы термодинамики

Немного о структуризации. Законы термодинамики разделяются на четыре группы, каждая из которых имеет определенный смысл. Итак, что могут поведать нам начала термодинамики?

Первое и второе

Первое начало расскажет о том, как применяется закон сохранения энергии по отношению к той или иной термодинамической системе. Второе начало выдвигает некоторые ограничения, которые применяются к направлениям термодинамических процессов. Более конкретно, они запрещают самопроизвольную передачу тепла, совершаемую от менее нагретого к более нагретому телу. Есть у второго закона термодинамики и альтернативное название: закон возрастания энтропии.

Третье и четвертое

Третий закон описывает поведение энтропии вблизи абсолютного температурного нуля. Есть еще одно начало, последнее. Оно носит название “нулевой закон термодинамики”. Смысл его заключается в том, что любая замкнутая система придет к состоянию термодинамического равновесия и из него выйти уже самостоятельно не сможет. При этом ее начальное состояние может быть любым.

Зачем нужны начала термодинамики?

Законы термодинамики были изучены для того, чтобы описывать макроскопические параметры тех или иных систем. При этом конкретные предложения, имеющие связь с микроскопическим устройством, не выдвигаются. Этот вопрос изучается отдельно, но уже другим ответвлением науки - статистической физикой. Законы термодинамики независимы друг от друга. Что это может означать? Это нужно понимать так, что ни одно начало термодинамики из другого вывести невозможно.

Первое начало термодинамики

Как известно, термодинамическая система характеризуется несколькими параметрами, в числе которых есть и внутренняя энергия (обозначается буквой U). Последняя формируется из кинетической энергии, которую имеют все частицы. Это может быть энергия поступательного, а также колебательного и вращательного движения. На этом моменте вспомним о том, что энергия может быть не только кинетической, но и потенциальной. Так вот, в случае идеальных газов потенциальной энергией пренебрегают. Именно поэтому внутренняя энергия U будет складываться исключительно из кинетической энергии движения молекул и зависеть от температуры.

Эта величина - внутренняя энергия - называется иными словами функцией состояния, поскольку она определяется состоянием термодинамической системы. В нашем случае она определяется температурой газа. Следует отметить, что внутренняя энергия не зависит от того, каким был переход в состояние. Допустим, что термодинамическая система совершает круговой процесс (цикл, как его называют в молекулярной физике). Иными словами, система, выйдя из начального состояния, подвергается определенным процессам, но в результате возвращается в первичное состояние. Тогда нетрудно догадаться, что изменение внутренней энергии будет равно 0.

Как изменяется внутренняя энергия?

Изменить внутреннюю энергию идеального газа можно двумя способами. Первый вариант - совершить работу. Второй - сообщить системе то или иное количество теплоты. Логично, что второй способ подразумевает не только сообщение теплоты, но и ее отнятие.

Формулировка первого начала термодинамики

Их (формулировок) может быть несколько, так как все любят говорить по-разному. Но на самом деле суть остается той же. Она сводится к тому, что количество теплоты, которое было подведено к термодинамической системе, расходуется на совершение идеальным газом механической работы и изменение внутренней энергии. Если говорить о формуле или математической записи первого начала термодинамики, то она выглядит следующим образом: dQ = dU + dA.

Все величины, которые входят в состав формулы, могут иметь разные знаки. Ничто не запрещает им быть отрицательными. Допустим, что к системе подводится количество теплоты Q. Тогда газ будет нагреваться. Возрастает температура, а значит, увеличивается и внутренняя энергия газа. То есть и Q, и U будут иметь положительные значения. Но если внутренняя энергия газа увеличивается, он начинает вести себя активнее, расширяться. Следовательно, работа также будет положительной. Можно сказать, что работу совершает сама система, газ.

В случае если у системы забирают определенное количество теплоты, внутренняя энергия уменьшается, а газ сжимается. В таком случае можно говорить уже о том, что работу совершают над системой, а не она сама. Предположим опять, что некоторая термодинамическая система совершает цикл. В таком случае (как уже было сказано ранее) изменение внутренней энергии будет равно 0. Значит, работа, совершаемая газом или над ним, будет численно равна подведенной или отведенной к системе теплоте.

Математическую запись этого следствия называют еще одной формулировкой первого начала термодинамики. Примерно она звучит следующим образом: “В природе невозможно существование двигателя первого рода, то есть, двигателя, который совершал бы работу, превосходящую полученную извне теплоту”.

Второе начало термодинамики

Нетрудно догадаться, что термодинамическое равновесие характерно для системы, в которой макроскопические величины остаются неизменными во времени. Это, конечно же, давление, объем и температура газа. Их неизменность может быть построена на нескольких условиях: на отсутствии теплопроводности, химических реакций, диффузии и других процессов. Если под действием внешних факторов система была выведена из термодинамического равновесия, она к нему со временем вернется. Но если эти факторы будут отсутствовать. Причем произойдет это самопроизвольно.

Мы пойдем немного другим путем, отличным от того, что рекомендуют многие учебники. Для начала ознакомимся со вторым началом термодинамики, а уже потом разберемся, что за величины в него входят, и что они обозначают. Итак, в замкнутой системе при наличии любых протекающих в ней процессов энтропия не убывает. Записывается второе начало термодинамики следующим образом: dS >(=) 0. Здесь знак > будет связан с необратимым процессом, а знак = - с обратимым.

Что же называется в термодинамике обратимым процессом? А это такой процесс, при котором система возвращается (спустя череду каких-то процессов) к своему первоначальному состоянию. Причем в этом случае ни в системе, ни в окружающей среде никаких изменений не остается. Иными словами, обратимый процесс - это такой процесс, для которого возможно возвращение в начальное состояние через промежуточные состояния, идентичные прямому процессу. В молекулярной физике таких процессов очень мало. Например, переход количества теплоты от более нагретого тела к менее нагретому будет необратимым. Аналогично и в случае диффузии двух веществ, а также распространения газа на весь объем.

Энтропия

Энтропия, имеющая место во втором законе термодинамики, равна изменению количества теплоты, деленному на температуру. Формула: dS = dQ/T. Она имеет определенные свойства.

Основные формулы термодинамики и молекулярной физики, которые вам пригодятся.
Еще один отличный день для практических занятий по физике. Сегодня мы соберем вместе формулы, которые чаще всего используются при решении задач в термодинамике и молекулярной физике.

Итак, поехали. Попытаемся изложить законы и формулы термодинамики кратко.

Идеальный газ

Идеальный газ – это идеализация, как и материальная точка. Молекулы такого газа являются материальными точками, а соударения молекул – абсолютно упругие. Взаимодействием же молекул на расстоянии пренебрегаем. В задачах по термодинамике реальные газы часто принимаются за идеальные. Так гораздо легче жить, и не нужно иметь дела с массой новых членов в уравнениях.

Итак, что происходит с молекулами идеального газа? Да, они движутся! И резонно спросить, с какой скоростью? Конечно, помимо скорости молекул нас интересует еще и общее состояние нашего газа. Какое давление P он оказывает на стенки сосуда, какой объем V занимает, какая у него температура T.

Для того, чтобы узнать все это, есть уравнение состояния идеального газа, или уравнение Клапейрона-Менделеева

Здесь m – масса газа, M – его молекулярная масса (находим по таблице Менделеева), R – универсальная газовая постоянная, равная 8,3144598(48) Дж/(моль*кг).

Универсальная газовая потоянная может быть выражена через другие константы (постоянная Больцмана и число Авогадро )

Масс у , в свою очередь, можно вычислить, как произведение плотности и объема .

Основное уравнение молекулярно-кинетической теории (МКТ)

Как мы уже говорили, молекулы газа движутся, причем, чем выше температура – тем быстрее. Существует связь между давлением газа и средней кинетической энергией E его частиц. Эта связь называется основным уравнением молекулярно-кинетической теории и имеет вид:

Здесь n – концентрация молекул (отношение их количества к объему), E – средняя кинетическая энергия. Найти их, а также среднюю квадратичную скорость молекул можно, соответственно, по формулам:

Подставим энергию в первое уравнение, и получим еще один вид основного уравнения МКТ

Первое начало термодинамики. Формулы для изопроцессов

Напомним Вам, что первый закон термодинамики гласит: количество теплоты, переданное газу, идёт на изменение внутренней энергии газа U и на совершение газом работы A. Формула первого закона термодинамики записывается так:

Как известно, с газом что-то происходит, мы можем сжать его, можем нагреть. В данном случае нас интересуют такие процессы, которые протекают при одном постоянном параметре. Рассмотрим, как выглядит первое начало термодинамики в каждом из них.

Кстати! Для всех наших читателей сейчас действует скидка 10% на .

Изотермический процесс протекает при постоянной температуре. Тут работает закон Бойля-Мариотта: в изотермическом процессе давление газа обратно пропорционально его объёму. В изотермическом процессе:

протекает при поcтоянном объеме. Для этого процесса характерен закон Шарля: При постоянном объеме давление прямо пропорционально температуре. В изохорном процессе все тепло, подведенное к газу, идет на изменение его внутренней энергии.

идет при постоянном давлении. Закон Гей-Люссака гласит, что при постоянном давлении газа его объём прямо пропорционален температуре. При изобарном процессе тепло идет как на изменение внутренней энергии, так и на совершение газом работы.

. Адиабатный процесс – это такой процесс, который проходит без теплообмена с окружающей средой. Это значит, что формула первого закона термодинамики для адиабатного процесса выглядит так:

Внутренняя энергия одноатомного и двухатомного идеального газа

Теплоемкость

Удельная теплоемкость равна количеству теплоты, которое необходимо для нагревания одного килограмма вещества на один градус Цельсия.

Помимо удельной теплоемкости, есть молярная теплоемкость (количество теплоты, необходимое для нагревания одного моля вещества на один градус) при постоянном объеме, и молярная теплоемкость при постоянном давлении. В формулах ниже, i – число степеней свободы молекул газа. Для одноатомного газа i=3, для двухатомного – 5.

Тепловые машины. Формула КПД в термодинамике

Тепловая машина , в простейшем случае, состоит из нагревателя, холодильника и рабочего тела. Нагреватель сообщает тепло рабочему телу, оно совершает работу, затем охлаждается холодильником, и все повторяется вно вь. Типичным примером тепловой машины является двигатель внутреннего сгорания.

Коэффициент полезного действия тепловой машины вычисляется по формуле

Вот мы и собрали основные формулы термодинамики, которые пригодятся в решении задач. Конечно, это не все все формулы из темы термодинамика, но их знание действительно может сослужить хорошую службу. А если возникнут вопросы – помните о студенческом сервисе , специалисты которого готовы в любой момент прийти на выручку.