Физико-химические свойства белков.

Как известно, белки - основа зарождения жизни на нашей планете. По именно коацерватная капля, состоящая из молекул пептидов, стала основой зарождения живого. Это и не вызывает сомнений, ведь анализ внутреннего состава любого представителя биомассы показывает, что эти вещества есть во всем: растениях, животных, микроорганизмах, грибах, вирусах. Причем они очень разнообразны и макромолекулярны по природе.

Названий у этих структур четыре, все они являются синонимами:

  • белки;
  • протеины;
  • полипептиды;
  • пептиды.

Белковые молекулы

Их количество поистине неисчислимо. При этом все белковые молекулы можно разделить на две большие группы:

  • простые - состоят только из аминокислотных последовательностей, соединенных пептидными связями;
  • сложные - строение и структура белка характеризуются дополнительными протолитическими (простетическими) группами, называемыми еще кофакторами.

При этом сложные молекулы также имеют свою классификацию.

Градация сложных пептидов

  1. Гликопротеиды - тесно связанные соединения белка и углевода. В структуру молекулы вплетаются простетические группы мукополисахаридов.
  2. Липопротеиды - комплексное соединение из белка и липида.
  3. Металлопротеиды - в качестве простетической группы выступают ионы металлов (железо, марганец, медь и другие).
  4. Нуклеопротеиды - связь белка и нуклеиновых кислот (ДНК, РНК).
  5. Фосфопротеиды - конформация протеина и остатка ортофосфорной кислоты.
  6. Хромопротеиды - очень схожи с металлопротеидами, однако элемент, входящий в состав простетической группы, представляет собой целый окрашенный комплекс (красный - гемоглобин, зеленый - хлорофилл и так далее).

У каждой рассмотренной группы строение и свойства белков различны. Функции, которые они выполняют, также варьируются в зависимости от типа молекулы.

Химическое строение белков

С данной точки зрения протеины - это длинная, массивная цепь аминокислотных остатков, соединяющихся между собой специфическими связями, называемыми пептидными. От боковых структур кислот отходят ответвления - радикалы. Такое строение молекулы было открыто Э. Фишером в начале XXI века.

Позже более подробно были изучены белки, строение и функции белков. Стало ясно, что аминокислот, образующих структуру пептида, всего 20, но они способны комбинироваться самым разным способом. Отсюда и разнообразие полипептидных структур. Кроме того, в процессе жизнедеятельности и выполнения своих функций белки способны претерпевать ряд химических превращений. В результате они меняют структуру, и появляется уже совсем новый тип соединения.

Чтобы разорвать пептидную связь, то есть нарушить белок, строение цепей, нужно подобрать очень жесткие условия (действие высоких температур, кислот или щелочей, катализатора). Это объясняется высокой прочностью в молекуле, а именно в пептидной группе.

Обнаружение белковой структуры в условиях лаборатории проводится при помощи биуретовой реакции - воздействия на полипептид свежеосажденным (II). Комплекс пептидной группы и иона меди дает ярко-фиолетовую окраску.

Существует четыре основные структурные организации, каждая из которых имеет свои особенности строения белков.

Уровни организации: первичная структура

Как уже упоминалось выше, пептид - это последовательность аминокислотных остатков с включениями, коферментами или же без них. Так вот первичной называют такую структуру молекулы, которая является природной, естественной, представляет собой истинно аминокислоты, соединенные пептидными связями, и больше ничего. То есть полипептид линейного строения. При этом особенности строения белков такого плана - в том, что такое сочетание кислот является определяющим для выполнения функций белковой молекулы. Благодаря наличию данных особенностей возможно не только идентифицировать пептид, но и предсказать свойства и роль совершенно нового, еще не открытого. Примеры пептидов, обладающих природным первичным строением, - инсулин, пепсин, химотрипсин и другие.

Вторичная конформация

Строение и свойства белков этой категории несколько меняются. Такая структура может сформироваться изначально от природы либо при воздействии на первичную жестким гидролизом, температурой или иными условиями.

Данная конформация имеет три разновидности:

  1. Ровные, правильные, стереорегулярные витки, построенные из остатков аминокислот, которые закручиваются вокруг основной оси соединения. Удерживаются вместе только возникающими между кислородом одной пептидной группировки и водородом другой. Причем строение считается правильным из-за того, что витки равномерно повторяются через каждые 4 звена. Такая структура может быть как левозакрученной, так и правозакрученной. Но в большинстве известных белков преобладает правовращающий изомер. Такие конформации принято называть альфа-структурами.
  2. Состав и строение белков следующего типа отличается от предыдущего тем, что водородные связи образуются не между рядом стоящими по одной стороне молекулы остатками, а между значительно удаленными, причем на достаточно большое расстояние. По этой причине вся структура принимает вид нескольких волнообразных, извитых змейкой полипептидных цепочек. Есть одна особенность, которую должен проявлять белок. Строение аминокислот на ответвлениях должно быть максимально коротким, как у глицина или аланина, например. Этот тип вторичной конформации носит название бета-листов за способность будто слипаться при образовании общей структуры.
  3. Относящееся к третьему типу строение белка биология обозначает как сложные, разноразбросанные, неупорядоченные фрагменты, не обладающие стереорегулярностью и способные изменять структуру под воздействием внешних условий.

Примеров белков, имеющих вторичную структуру от природы, не выявлено.

Третичное образование

Это достаточно сложная конформация, имеющая название "глобула". Что собой представляет такой белок? Строение его основывается на вторичной структуре, однако добавляются новые типы взаимодействий между атомами группировок, и вся молекула словно сворачивается, ориентируясь, таким образом, на то, чтобы гидрофильные группировки были направлены внутрь глобулы, а гидрофобные - наружу.

Этим объясняется заряд белковой молекулы в коллоидных растворах воды. Какие же типы взаимодействий здесь присутствуют?

  1. Водородные связи - остаются без изменений между теми же самыми частями, что и во вторичной структуре.
  2. взаимодействия - возникают при растворении полипептида в воде.
  3. Ионные притяжения - образуются между разнозаряженными группами аминокислотных остатков (радикалов).
  4. Ковалентные взаимодействия - способны формироваться между конкретными кислотными участками - молекулами цистеина, вернее, их хвостами.

Таким образом, состав и строение белков, обладающих третичной структурой, можно описать как свернутые в глобулы полипептидные цепи, удерживающие и стабилизирующие свою конформацию за счет разных типов химических взаимодействий. Примеры таких пептидов: фосфоглицераткеназа, тРНК, альфа-кератин, фиброин шелка и другие.

Четвертичная структура

Это одна из самых сложных глобул, которую образуют белки. Строение и функции белков подобного плана очень многогранны и специфичны.

Что собой представляет такая конформация? Это несколько (в некоторых случаях десятки) крупных и мелких полипептидных цепей, которые формируются независимо друг от друга. Но затем за счет тех же взаимодействий, что мы рассматривали для третичной структуры, все эти пептиды скручиваются и переплетаются между собой. Таким образом получаются сложные конформационные глобулы, которые могут содержать и атомы металлов, и липидные группировки, и углеводные. Примеры таких белков: ДНК-полимераза, белковая оболочка табачного вируса, гемоглобин и другие.

Все рассмотренные нами структуры пептидов имеют свои методы идентификации в лабораторных условиях, основанные на современных возможностях использования хроматографии, центрифугирования, электронной и оптической микроскопии и высоких компьютерных технологиях.

Выполняемые функции

Строение и функции белков тесно коррелируют друг с другом. То есть каждый пептид играет определенную роль, уникальную и специфическую. Встречаются и такие, которые способны выполнять в одной живой клетке сразу несколько значительных операций. Однако можно в обобщенном виде выразить основные функции белковых молекул в организмах живых существ:

  1. Обеспечение движения. Одноклеточные организмы, либо органеллы, или некоторые виды клеток способны к передвижениям, сокращениям, перемещениям. Это обеспечивается белками, входящими в состав структуры их двигательного аппарата: ресничек, жгутиков, цитоплазматической мембраны. Если же говорить о неспособных к перемещениям клетках, то белки могут способствовать их сокращению (миозин мышц).
  2. Питательная или резервная функция. Представляет собой накопление белковых молекул в яйцеклетках, зародышах и семенах растений для дальнейшего восполнения недостающих питательных веществ. При расщеплении пептиды дают аминокислоты и биологически активные вещества, которые необходимы для нормального развития живых организмов.
  3. Энергетическая функция. Помимо углеводов, силы организму могут давать и белки. При распаде 1 г пептида высвобождается 17,6 кДж полезной энергии в форме аденозинтрифосфорной кислоты (АТФ), которая расходуется на процессы жизнедеятельности.
  4. Сигнальная и Заключается в осуществлении тщательного контроля за происходящими процессами и передачи сигналов от клеток к тканям, от них к органам, от последних к системам и так далее. Типичным примером может служить инсулин, который строго фиксирует количество глюкозы в крови.
  5. Рецепторная функция. Осуществляется путем изменения конформации пептида с одной стороны мембраны и вовлечения в реструктуризацию другого конца. При этом и происходит передача сигнала и необходимой информации. Чаще всего такие белки встраиваются в цитоплазматические мембраны клеток и осуществляют строгий контроль над всеми веществами, проходящими через нее. Также оповещают о химических и физических изменениях окружающей среды.
  6. Транспортная функция пептидов. Ее осуществляют белки-каналы и белки-переносчики. Роль их очевидна - транспортировка необходимых молекул к местам с низкой концентрацией из частей с высокой. Типичным примером служит перенос кислорода и диоксида углерода по органам и тканям белком гемоглобином. Ими же осуществляется доставка соединений с невысокой молекулярной массой через мембрану клетки внутрь.
  7. Структурная функция. Одна из важнейших из тех, которые выполняет белок. Строение всех клеток, их органелл обеспечивается именно пептидами. Они подобно каркасу задают форму и структуру. Кроме того, они же ее поддерживают и видоизменяют в случае необходимости. Поэтому для роста и развития всем живым организмам необходимы белки в рационе питания. К таким пептидам можно отнести эластин, тубулин, коллаген, актин, кератин и другие.
  8. Каталитическая функция. Ее выполняют ферменты. Многочисленные и разнообразные, они ускоряют все химические и биохимические реакции в организме. Без их участия обычное яблоко в желудке смогло бы перевариться только за два дня, с большой вероятностью загнив при этом. Под действием каталазы, пероксидазы и других ферментов этот процесс происходит за два часа. В целом именно благодаря такой роли белков осуществляется анаболизм и катаболизм, то есть пластический и

Защитная роль

Существует несколько типов угроз, от которых белки призваны оберегать организм.

Во-первых, травмирующих реагентов, газов, молекул, веществ различного спектра действия. Пептиды способны вступать с ними в химическое взаимодействие, переводя в безобидную форму или же просто нейтрализуя.

Во-вторых, физическая угроза со стороны ран - если белок фибриноген вовремя не трансформируется в фибрин на месте травмы, то кровь не свернется, а значит, закупорка не произойдет. Затем, наоборот, понадобится пептид плазмин, способный сгусток рассосать и восстановить проходимость сосуда.

В-третьих, угроза иммунитету. Строение и значение белков, формирующих иммунную защиту, крайне важны. Антитела, иммуноглобулины, интерфероны - все это важные и значимые элементы лимфатической и иммунной системы человека. Любая чужеродная частица, вредоносная молекула, отмершая часть клетки или целая структура подвергается немедленному исследованию со стороны пептидного соединения. Именно поэтому человек может самостоятельно, без помощи лекарственных средств, ежедневно защищать себя от инфекций и несложных вирусов.

Физические свойства

Строение белка клетки весьма специфично и зависит от выполняемой функции. А вот физические свойства всех пептидов схожи и сводятся к следующим характеристикам.

  1. Вес молекулы - до 1000000 Дальтон.
  2. В водном растворе формируют коллоидные системы. Там структура приобретает заряд, способный варьироваться в зависимости от кислотности среды.
  3. При воздействии жестких условий (облучение, кислота или щелочь, температура и так далее) способны переходить на другие уровни конформаций, то есть денатурировать. Данный процесс в 90% случаев необратим. Однако существует и обратный сдвиг - ренатурация.

Это основные свойства физической характеристики пептидов.

§ 9. ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА БЕЛКОВ

Белки – это очень крупные молекулы, по своим размерам они могут уступать только отдельным представителям нуклеиновых кислот и полисахаридам. В таблице 4 представлены молекулярные характеристики некоторые белков.

Таблица 4

Молекулярные характеристики некоторых белков

Относитель-ная молекулярная масса

Число цепей

Число аминокислотных остатков

Рибонуклеаза

Миоглобин

Химотрипсин

Гемоглобин

Глутамат-дегидрогеназа

В молекулах белков может содержаться самое разное количество аминокислотных остатков - от 50 и до нескольких тысяч; относительные молекулярные массы белков также сильно колеблются - от нескольких тысяч (инсулин, рибонуклеаза) до миллиона (глутаматдегидрогеназа) и более. Число полипептидных цепей в составе белков может составлять от единицы до нескольких десятков и даже тысяч. Так, в состав белка вируса табачной мозаики входит 2120 протомеров.

Зная относительную молекулярную массу белка, можно приблизительно оценить, какое число аминокислотных остатков входит в его состав. Средняя относительная молекулярная масса аминокислот, образующих полипептидную цепь, равна 128. При образовании пептидной связи происходит отщепление молекулы воды, следовательно, средняя относительная масса аминокислотного остатка составит 128 – 18 = 110. Используя эти данные, можно подсчитать, что белок с относительной молекулярной массой 100000 будет состоять приблизительно из 909 аминокислотных остатков.

Электрические свойства белковых молекул

Электрические свойства белков определяются присутствием на их поверхности положительно и отрицательно заряженных аминокислотных остатков. Наличие заряженных группировок белка определяет суммарный заряд белковой молекулы. Если в белках преобладают отрицательно заряженные аминокислоты, то его молекула в нейтральном растворе будет иметь отрицательный заряд, если преобладают положительно заряженные – молекула будет иметь положительный заряд. Суммарный заряд белковой молекулы зависит и от кислотности (рН) среды. При увеличении концентрации ионов водорода (увеличении кислотности) происходит подавление диссоциации карбоксильных групп:

и в то же время увеличивается число протонированных амино-групп;

Таким образом, при увеличении кислотности среды происходит уменьшение на поверхности молекулы белка числа отрицательно заряженных и увеличение числа положительно заряженных групп. Совсем другая картина наблюдается при снижении концентрации ионов водорода и увеличении концентрации гидроксид-ионов. Число диссоциированных карбоксильных групп возрастает

и снижается число протонированных аминогрупп

Итак, изменяя кислотность среды, можно изменить и заряд молекулы белка. При увеличении кислотности среды в молекуле белка снижается число отрицательно заряженных группировок и увеличивается число положительно заряженных, молекула постепенно теряет отрицательный и приобретает положительный заряд. При снижении кислотности раствора наблюдается противоположная картина. Очевидно, что при определенных значениях рН молекула будет электронейтральной, т.е. число положительно заряженных групп будет равно числу отрицательно заряженных групп, и суммарный заряд молекулы будет равен нулю (рис. 14).

Значение рН, при котором суммарный заряд белка равен нулю, называется изоэлектрической точкой и обозначается pI .

Рис. 14. В состоянии изоэлектрической точки суммарный заряд молекулы белка равен нулю

Изоэлектрическая точка для большинства белков находится в области рН от 4,5 до 6,5. Однако есть и исключения. Ниже приведены изоэлектрические точки некоторых белков:

При значениях рН ниже изоэлектрической точки белок несет суммарный положительный заряд, выше – суммарный отрицательный.

В изоэлектрической точке растворимость белка минимальна, так как его молекулы в таком состоянии электронейтральны и между ними нет сил взаимного отталкивания, поэтому они могут «слипаться» за счет водородных и ионных связей, гидрофобных взаимодействий, ван-дер-ваальсовых сил. При значениях рН, отличающихся от рI, молекулы белка будут нести одинаковый заряд - либо положительный, либо отрицательный. В результате этого между молекулами будут существовать силы электростатического отталкивания, препятствующие их «слипанию», растворимость будет выше.

Растворимость белков

Белки бывают растворимые и нерастворимые в воде. Растворимость белков зависит от их структуры, величины рН, солевого состава раствора, температуры и других факторов и определяется природой тех групп, которые находятся на поверхности белковой молекулы. К нерастворимым белкам относятся кератин (волосы, ногти, перья), коллаген (сухожилия), фиброин (щелк, паутина). Многие другие белки растворимы в воде. Растворимость определяется наличием на их поверхности заряженных и полярных группировок (-СОО - , -NH 3 + , -OH и др.). Заряженные и полярные группировки белков притягивают к себе молекулы воды, и вокруг них формируется гидратная оболочка (рис. 15), существование которой обусловливает их растворимость в воде.

Рис. 15. Образование гидратной оболочки вокруг молекулы белка.

На растворимость белка влияет наличие нейтральных солей (Na 2 SO 4 , (NH 4) 2 SO 4 и др.) в растворе. При малых концентрациях солей растворимость белка увеличивается (рис. 16), так как в таких условиях увеличивается степень диссоциации полярных групп и экранируются заряженные группы белковых молекул, тем самым снижается белок-белковое взаимодействие, способствующее образованию агрегатов и выпадению белка в осадок. При высоких концентрациях солей растворимость белка снижается (рис. 16) вследствие разрушения гидратной оболочки, приводящего к агрегации молекул белка.

Рис. 16. Зависимость растворимости белка от концентрации соли

Существуют белки, которые растворяются только в растворах солей и не растворяются в чистой воде, такие белки называют глобулины . Существуют и другие белки – альбумины , они в отличие от глобулинов хорошо растворимы в чистой воде.
Растворимость белков зависит и от рН растворов. Как мы уже отмечали, минимальной растворимостью обладают белки в изоэлектрической точке, что объясняется отсутствием электростатического отталкивания между молекулами белка.
При определенных условиях белки могут образовывать гели. При образовании геля молекулы белка формируют густую сеть, внутреннее пространство которой заполнено растворителем. Гели образуют, например, желатина (этот белок используют для приготовления желе) и белки молока при приготовлении простокваши.
На растворимость белка оказывает влияние и температура. При действии высокой температуры многие белки выпадают в осадок вследствие нарушения их структуры, но об этом более подробно поговорим в следующем разделе.

Денатурация белка

Рассмотрим хорошо нам знакомое явление. При нагревании яичного белка происходит постепенное его помутнение, и затем образуется твердый сгусток. Свернувшийся яичный белок – яичный альбумин – после охлаждения оказывается нерастворимым, в то время как до нагревания яичный белок хорошо растворялся в воде. Такие же явления происходят и при нагревании практически всех глобулярных белков. Те изменения, которые произошли при нагревании, называются денатурацией . Белки в естественном состоянии носят название нативных белков, а после денатурации - денатурированных .
При денатурации происходит нарушение нативной кон-формации белков в результате разрыва слабых связей (ион-ных, водородных, гидрофобных взаимодействий). В результате этого процесса могут разрушаться четвертичная, третичная и вторичные структуры белка. Первичная структура при этом сохраняется (рис. 17).


Рис. 17. Денатурация белка

При денатурации гидрофобные радикалы аминокислот, находящиеся в нативных белках в глубине молекулы, оказываются на поверхности, в результате создаются условия для агрегации. Агрегаты белковых молекул выпадают в осадок. Денатурация сопровождается потерей биологической функции белка.

Денатурация белка может быть вызвана не только повышенной температурой, но и другими факторами. Кислоты и щелочи способны вызвать денатурацию белка: в результате их действия происходит перезарядка ионогенных групп, что приводит к разрыву ионных и водородных связей. Мочевина разрушает водородные связи, следствием этого является потеря белками своей нативной структуры. Денатурирующими агентами являются органические растворители и ионы тяжелых металлов: органические растворители разрушают гидрофобные связи, а ионы тяжелых металлов образуют нерастворимые комплексы с белками.

Наряду с денатурацией существует и обратный процесс – ренатурация. При снятии денатурирующего фактора возможно восстановление исходной нативной структуры. Например, при медленном охлаждении до комнатной температуры раствора восстанавливается нативная структура и биологическая функция трипсина.

Белки могут денатурировать и в клетке при протекании нормальных процессов жизнедеятельности. Совершенно очевидно, что утрата нативной структуры и функции белков – крайне нежелательное событие. В связи с этим следует упомянуть об особых белках – шаперонах . Эти белки способны узнавать частично денатурированные белки и, связываясь с ними, восстанавливать их нативную конформацию. Шапероны также узнают белки, процесс денатурации которых зашел далеко, и транспортируют их в лизосомы, где происходит их расщепление (деградация). Шапероны играют важную роль и в процессе формирования третичной и четвертичной структур во время синтеза белка.

Интересно знать! В настоящее время часто упоминается такое заболевание, как коровье бешенство. Эту болезнь вызывают прионы. Они могут вызывать у животных и человека и другие заболевания, носящие нейродегенеративный характер. Прионы – это инфекционные агенты белковой природы. Прион, попадая в клетку, вызывает изменение конформации своего клеточного аналога, который сам становится прионом. Так возникает заболевание. Прионный белок отличается от клеточного по вторичной структуре. Прионная форма белка имеет в основном b -складчатую структуру, а клеточная – a -спиральную.

Химические свойства белков

Физические свойства белков

Физические и химические свойства белков. Цветные реакции белков

Свойства белков так же разнообразны, как и функции, которые они выполняют. Одни белки растворяются в воде, образуя, как правило, коллоидные растворы (например, белок яйца); другие растворяются в разбавленных раство­рах солей; третьи нерастворимы (например, белки покров­ных тканей).

В радикалах аминокислотных остатков белки содержат различные функциональные группы, которые способны вступать во многие реакции. Белки вступают в реакции окисления-восстановления, этерификации, алкилирования, нитрования, могут образовывать соли как с кислота­ми, так и с основаниями (белки амфотерны).

1. Гидролиз белков: H +

[− NH 2 ─CH─ CO─NH─CH─CO − ] n +2nH 2 O → n NH 2 − CH − COOH + n NH 2 ─ CH ─ COOH

│ │ ‌‌│ │

Аминокислота 1 аминокислота 2

2. Осаждение белков :

а) обратимое

Белок в растворе ↔ осадок белка. Происходит под действием растворов солей Na + , K +

б) необратимое (денатурация)

При денатурации под действием внешних факторов (температура; механическое воздействие – давление, растирание, встряхивание, ультразвук; действия химических агентов – кислот, щелочей и др.) происходит изменение вторичной, третичной и четвертичной структур белковой макромолекулы, т.е её нативной пространственной структуры. Первичная структура, а, следовательно, и химический состав белка не меняются.

При денатурации изменяются физические свойства белков: снижается растворимость, теряется биологическая активность. В тоже время увеличивается активность некоторых химических групп, облегчается воздействие на белки протеолитических ферментов, а, следовательно, он легче гидролизуется.

Например, альбумин - яичный белок - при темпера­туре 60-70° осаждается из раствора (свертывается), теряя способность растворяться в воде.

Схема процесса денатурации белка (разрушение третичной и вторичной структур белковых молекул)

,3. Горение белков

Белки горят с образованием азота, углекислого газа, воды, а также некоторых других веществ. Горение сопровождается характерным запахом жженых перьев

4. Цветные (качественные) реакции на белки:

а) ксантопротеиновая реакция (на остатки аминокислот, содержащих бензольные кольца):

Белок + HNO 3 (конц.) → желтое окрашивание

б) биуретовая реакция (на пептидные связи):

Белок + CuSO 4 (насыщ) + NaOH (конц) → ярко-фиолетовое окрашивание

в) цистеиновая реакция (на остатки аминокислот, содер­жащих серу):

Белок + NaOH + Pb(CH 3 COO) 2 → Черное окрашивание

Белки являются основой всего живого на Земле и выпол­няют в организмах многообразные функции.

Изоэлектрическая точка

Амфотерность - кислотно- основные свойства белков.

Четвертичная структура

Многие белки состоят из нескольких субъединиц(протомеров), которые могут иметь одинаковый или различный аминокислотный состав. В этом случае белки имеют четвертичную структуру . Белки обычно содержат четное число субъединиц: две, четыре, шесть. Взаимодействие происходит за счет ионных, водородных связей, Ван-дер-ваальсовых сил. Гемоглобин взрослого человека HbA состоит из четырех попарно одинаковых субъединиц (а 2 β 2).

Четвертичная структура дает многие биологические преимущества:

а) возникает экономия генетического материала., уменьшается длина структурного гена и иРНК, в которых записана информация о первичной структуре белка.

б) возможно осуществлять замену субъединиц, что позволяет изменять активность

фермента в связи с изменяющимися условиями(осуществлять адаптацию). Гемоглобин

новорожденного состоит из белков (а 2 γ 2) . но в течение первых месяцев состав становится как у взрослого человека (а 2 β 2) .

8.4 . Физико-химические свойства белка

Белки, как и аминокислоты, являются амфотерными соединениями и обладают буферными свойствами.

Белки можно разделить на нейтральные, кислые и основные .

Нейтральные белки содержат равное число групп, склонных к ионизации: кислотных и основных. Изоэлектрическая точка таких белков находится в среде, близкой к нейтральной, если рН < pI , то белок становится положительно заряженным катионом, pH > pI , то белок становится отрицательно заряженным анионом.

NH 3 - белок - COOН <--> + NH 3 - белок - COO – <--> NH 2 - белок - COO –

рН < pI водный растворI pH > pI

Кислые белки содержат неравное число групп, склонных к ионизации: карбоксильных больше, чем аминогрупп. В водном растворе они приобретают отрицательный заряд, а раствор становится кислым. При добавлении кислоты (Н +) белок вначале входит в изоэлектрическую точку, а затем в избытке кислоты – превращается в катион. В щелочной среде такой белок заряжен отрицательно(исчезает заряд аминогруппы).

Кислый белок

NH 3 - белок - COO – + Н + + NH 3 - белок - COO – + Н + + NH 3 -белок- COOН

| <--> | <--> |

CОО – CООН COOН

Водный раствор рН = р I рН < pI

В избытке кислоты белок

заряжен положительно

Кислый белок в щелочной среде заряжен отрицательно

NH 3 - белок - COO – ОН – NH 2 - белок - COO –

| <--> |

CОО – CОО –

pH > pI

Основные белки содержат неравное число групп, склонных к ионизации: аминогрупп больше, чем карбоксильных. В водном растворе они приобретают положительный заряд, а раствор становится щелочным. При добавлении щелочи (ОН –) белок вначале входит в изоэлектрическую точку, а далее в избытке щелочи – превращается в анион. В кислой среде такой белок заряжен положительно(исчезает заряд карбоксильной группы)

Донецкая общеобразовательная школа I – III ступеней № 21

«Белки. Получение белков реакцией поликонденсации аминокислот. Первичная, вторичная и третичная структуры белков. Химические свойства белков: горение, денатурация, гидролиз и цветные реакции. Биохимические функции белков».

Подготовила

учитель химии

учитель – методист

г. Донецк, 2016

«Жизнь – это способ существования белковых тел»

Тема урока. Белки. Получение белков реакцией поликонденсации аминокислот. Первичная, вторичная и третичная структуры белков. Химические свойства белков: горение, денатурация, гидролиз и цветные реакции. Биохимические функции белков.

Цели урока. Ознакомить учащихся с белками как найвысшей степенью развития веществ в природе, которые обусловили появление жизни; показать их строение, свойства и разнообразие биологических функций; расширить понятие о реакции поликонденсации на примере получения белков, информировать школьников о гигиене питания, о сохранении своего здоровья. Развивать у учащихся логическое мышление.

Реактивы и оборудование. Таблица « Первичная, вторичная и третичная структуры белков». Реактивы: HNO3, NaOH, CuSO4, куриный белок, шерстяная нить, химическая посуда.

Метод урока. Информационно – развивающий.

Тип урока. Урок усвоения новых знаний и умений.

Ход урока

І. Организационный момент.

ІІ. Проверка домашнего задания, актуализация и коррекция опорных знаний.

Блицопрос

1. Объясните термин «аминокислота».

2. Назовите функциональные группы, которые входят в состав аминокислот.

3. Номенклатура аминокислот и их изомерия.

4. Почему аминокислоты проявляют амфотерные свойства? Напишите уравнения химических реакций.

5. Благодаря каким свойствам аминокислоты образуют полипептиды. Напишите реакцию поликонденсации аминокислот.

ІІІ. Сообщение темы, цели урока, мотивация учебной деятельности .

IV. Восприятие и первичное осознание нового материала.

Учитель.

«Повсюду, где мы встречаем жизнь, мы находим, что она связана с каким – либо белковым телом» - так написал Ф. Энгельс в своей книге «Анти – Дюринг». Недостаток белка в пище приводит к общему ослаблению организма, у детей – к замедлению умственного и физического развития. На сегодня больше половины человечества не получает с пищей необходимого количества белков. В сутки человеку необходимо 115 г белка, про запас белок не откладывается в отличие от углеводов и жиров, поэтому необходимо следить за своим рационом. Мы знакомы с вами с кератином – белком из которого состоят волосы, ногти, перья, кожа, - он выполняет строительную функцию; знакомы с белком пепсином – он содержится в желудочном соке и способен разрушать другие белки при пищеварении; белок тромбин участвует в свертывании крови; гормон поджелудочной железы - инсулин – регулирует обмен глюкозы; гемоглобин транспортирует О2 ко всем клеткам и тканям организма и т. д.

Откуда же берется это бесконечное многообразие белковых молекул, многообразие их функций и их особая роль в жизненных процессах? Для того, чтобы ответить на этот вопрос обратимся к составу и строению белков.

В состав белков входят атомы?...

Чтобы ответить на этот вопрос проведем разминку. Отгадайте загадки и объясните смысл ответов.

1. Он повсюду и везде:

В камне, в воздухе, в воде.

Он и в утренней росе

И в небес голубизне.

(кислород)

2. Я – самый легкий элемент,

В природе без меня ни шагу.

И с кислородом я в момент

3. В воздухе он главный газ,

Окружает всюду нас.

Угасает жизнь растений

Без него, без удобрений.

В наших клеточках живет

4. Отправились школьники как – то в поход

(К задаче химической это подход).

Ночью костер развели при луне,

Песенки пели о ярком огне.

Отбросьте в сторонку свои сантименты:

Какие горели в огне элементы?

(углерод, водород)

Да, правильно, это главные химические элементы, входящие в состав белка.

Об этих четырех элементах можно сказать словами Шиллера « Четыре элемента, сливаясь вместе, дают жизнь и строят мир».

Белки – это природные полимеры, состоящие из остатков α – аминокислот, соединенных между собой пептидными связями.

В состав белков входит 20 различных аминокислот, отсюда следует огромное многообразие белков при их различных комбинациях. В организме человека насчитывается до 100 000 белков.

Историческая справка.

Первая гипотеза о строении молекулы белка была предложена в 70-х гг. XIX в. Это была уреидная теория строения белка.

В 1903г. немецким ученым была высказана пептидная теория, давшая ключ к тайне строения белка. Фишер предположил, что белки представляют собой полимеры аминокислот, соединенных пептидной связью.

Идея о том, что белки – это полимерные образования, высказывалась еще в 70 – 88 гг. XIX в. , русским ученым. Эта теория получила подтверждение в современных работах.

Уже первое ознакомление с белками дает некоторое представление о чрезвычайно сложном строении их молекул. Получают белки реакцией поликонденсации аминокислот:

https://pandia.ru/text/80/390/images/image007_47.gif" width="16" height="18">H – N – CH2 – C + H – N – CH2 – C →

https://pandia.ru/text/80/390/images/image012_41.gif" height="20 ">

NH2 - CH – C – N – CH – C – N – CH – C - … + nH2O →

⸗ O ⸗ O ⸗ O

→ NH2 – CH – C + NH2 – CH – C + NH2 – CH – C + …

̀ OH ̀ OH ̀ OH

4. Учитель демонстрирует опыт: горение шерстяной нити; ощущается запах паленых перьев – так можно отличить шерсть от тканей других видов.

V. Обобщение и систематизация знаний.

1. Составьте опорный конспект по белкам.

основа жизни ← Белки → полипептиды

(C, H, O, N) ↓ ↓ ↓ \ структуры белка

химичес цветные функции

кие св-ва реакции белка

2. Напишите уравнения реакции образования дипептида из глицина и валина.

VI. Подведение итога урока, домашнее задание.

Выучить §38 с. 178 – 184. Выполнить тестовые задания с. 183.