Внутреннее строение земли. Методы изучения географического прошлого земли

Методы изучения внутреннего строения и состава Земли

Методы изучения внутреннего строения и состава Земли можно разделить на две основные группы: геологические методы и геофизические методы. Геологические методы базируются на результатах непосредственного изучения толщ горных пород в обнажениях, горных выработках (шахтах, штольнях и пр.) и скважинах. При этом в распоряжении исследователей имеется весь арсенал методов исследования строения и состава, что определяет высокую степенью детальности получаемых результатов. Вместе с тем, возможности этих методов при изучении глубин планеты весьма ограничены – самая глубокая в мире скважина имеет глубину лишь -12262 м (Кольская сверхглубокая в России), ещё меньшие глубины достигнуты при бурении океанического дна (около -1500 м, бурение с борта американского исследовательского судна «Гломар Челленджер»). Таким образом, непосредственному изучению доступны глубины, не превышающие 0,19% радиуса планеты.

Сведения о глубинном строении базируются на анализе косвенных данных, полученных геофизическими методами , главным образом закономерностей изменения с глубиной различных физических параметров (электропроводности, механической добротности и т.д.), измеряемых при геофизических исследованиях. В основу разработки моделей внутреннего строения Земли положены в первую очередь результаты сейсмических исследований, опирающиеся на данные о закономерностях распространения сейсмических волн. В очагах землетрясений и мощных взрывов возникают сейсмические волны – упругие колебания. Эти волны разделяются на объёмные – распространяющиеся в недрах планеты и «просвечивающие» их подобно рентгеновским лучам, и поверхностные – распространяющиеся параллельно поверхности и «зондирующие» верхние слои планеты на глубину десятки – сотни километров.
Объемные волны, в свою очередь, разделяются на два вида – продольные и поперечные. Продольные волны, имеющие большую скорость распространения, первыми фиксируются сейсмоприёмниками, их называют первичными или Р-волнами (от англ. рrimary - первичные ), более «медленные» поперечные волны называют S-волны (от англ. secondary - вторичные ). Поперечные волны, как известно, обладают важной особенностью – они распространяются только в твёрдой среде.

На границах сред с разными свойствами происходит преломление волн, а на границах резких изменений свойств, помимо преломлённых, возникают отраженные и обменные волны. Поперечные волны могут иметь смещение, перпендикулярное плоскости падения (SH-волны) или смещение, лежащее в плоскости падения (SV-волны). При переходе границы сред с разными свойствами волны SH испытывают обычное преломление, а волны SV, кроме преломлённой и отражённой SV-волн, возбуждают P-волны. Так возникает сложная система сейсмических волн, «просвечивающих» недра планеты.

Анализируя закономерности распространения волн можно выявить неоднородности в недрах планеты - если на некоторой глубине фиксируется скачкообразное изменение скоростей распространения сейсмических волн, их преломление и отражение, можно заключить, что на этой глубине проходит граница внутренних оболочек Земли, различающихся по своим физическим свойствам.

Изучение путей и скорости распространения в недрах Земли сейсмических волн позволили разработать сейсмическую модель её внутреннего строения.

Сейсмические волны, распространяясь от очага землетрясения в глубь Земли, испытывают наиболее значительные скачкообразные изменения скорости, преломляются и отражаются на сейсмических разделах, расположенных на глубинах 33 км и 2900 км от поверхности (см. рис.). Эти резкие сейсмические границы позволяют разделить недра планеты на 3 главные внутренние геосферы – земную кору, мантию и ядро.

Земная кора от мантии отделяется резкой сейсмической границей, на которой скачкообразно возрастает скорость и продольных, и поперечных волн. Так скорость поперечных волн резко возрастает с 6,7-7,6 км/с в нижней части коры до 7,9-8,2 км/с в мантии. Эта граница была открыта в 1909 г. югославским сейсмологом Мохоровичичем и впоследствии была названа границей Мохоровичича (часто кратко называемой границей Мохо, или границей М). Средняя глубина границы составляет 33 км (нужно заметить, что это весьма приблизительное значение в силу разной мощности в разных геологических структурах); при этом под континентами глубина раздела Мохоровичича может достигать 75-80 км (что фиксируется под молодыми горными сооружениями – Андами, Памиром), под океанами она понижается, достигая минимальной мощности 3-4 км.

Ещё более резкая сейсмическая граница, разделяющая мантию и ядро, фиксируется на глубине 2900 км . На этом сейсмическом разделе скорость Р-волн скачкообразно падает с 13,6 км/с в основании мантии до 8,1 км/с в ядре; S-волны – с 7,3 км/с до 0. Исчезновение поперечных волн указывает, что внешняя часть ядра обладает свойствами жидкости. Сейсмическая граница, разделяющая ядро и мантию, была открыта в 1914 г. немецким сейсмологом Гутенбергом, и её часто называют границей Гутенберга , хотя это название и не является официальным.

Резкие изменения скорости и характера прохождения волн фиксируются на глубинах 670 км и 5150 км. Граница 670 км разделяет мантию на верхнюю мантию (33-670 км) и нижнюю мантию (670-2900 км). Граница 5150 км разделяет ядро на внешнее жидкое (2900-5150 км) и внутреннее твёрдое (5150-6371 км).

Существенные изменения отмечаются и на сейсмическом разделе 410 км , делящим верхнюю мантию на два слоя.

Полученные данные о глобальных сейсмических границах дают основание для рассмотрения современной сейсмической модели глубинного строения Земли.

Внешней оболочкой твёрдой Земли является земная кора , ограниченная границей Мохоровичича. Эта относительно маломощная оболочка, толщина которой составляет от 4-5 км под океанами до 75-80 км под континентальными горными сооружениями. В составе знмной коры отчетливо выделяется верхний осадочный слой , состоящий из неметаморфизованных осадочных пород, среди которых могут присутствовать вулканиты, и постилающая его консолидированная , или кристаллическая , кора , образованная метаморфизованными и магматическими интрузивными породами.Существуют два главных типа земной коры – континентальная и океанская, принципиально различающиеся по строению, составу, происхождению и возрасту.

Континентальная кора залегает под континентами и их подводными окраинами, имеет мощность от 35-45 км до 55-80 км, в её разрезе выделяются 3 слоя. Верхний слой, как правило, сложен осадочными породами, включающими небольшое количество слабометаморфизованных и магматических пород. Этот слой называется осадочным. Геофизически он характеризуются низкой скоростью Р-волн в диапазоне 2-5 км/с. Средняя мощность осадочного слоя около 2,5 км.
Ниже располагается верхняя кора (гранито-гнейсовый или «гранитный» слой), сложенный магматическими и метаморфическими породами богатыми кремнезёмом (в среднем соответствующими по химическому составу гранодиориту). Скорость прохождения Р-волн в данном слое составляет 5,9-6,5 км/с. В основании верхней коры выделяется сейсмический раздел Конрада, отражающий возрастание скорости сейсмических волн при переходе к нижней коре. Но этот раздел фиксируется не повсеместно: в континентальной коре часто фиксируется постепенное возрастание скоростей волн с глубиной.
Нижняя кора (гранулито-базитовый слой) отличается более высокой скоростью волн (6,7-7,5 км/с для Р-волн), что обусловлено изменением состава пород при переходе от верхней мантии. Согласно наиболее приятой модели её состав соответствует гранулиту.

В формировании континентальной коры принимают участие породы различного геологического возраста, вплоть до самых древних возрастом около 4 млрд. лет.

Океанская кора имеет относительно небольшую мощность, в среднем 6-7 км. В её разрезе в самом общем виде можно выделить 2 слоя. Верхний слой – осадочный, характеризующийся малой мощностью (в среднем около 0,4 км) и низкой скоростью Р-волн (1,6-2,5 км/с). Нижний слой – «базальтовый» - сложенный основными магматическими породами (вверху – базальтами, ниже – основными и ультраосновными интрузивными породами). Скорость продольных волн в «базальтовом» слое нарастает от 3,4-6,2 км/с в базальтах до 7-7,7 км/с в наиболее низких горизонтах коры.

Возраст древнейших пород современной океанской коры около 160 млн. лет.


Мантия представляет собой наибольшую по объёму и массе внутреннюю оболочку Земли, ограниченную сверху границей Мохо, снизу – границей Гутенберга. В её составе выделяется верхняя мантия и нижняя мантия, разделённые границей 670 км.

Верхняя мания по геофизическим особенностям разделяется на два слоя. Верхний слой - подкоровая мантия - простирается от границы Мохо до глубин 50-80 км под океанами и 200-300 км под континентами и характеризуется плавным нарастанием скорости как продольных, так и поперечных сейсмических волн, что объясняется уплотнением пород за счёт литостатического давления вышележащих толщ. Ниже подкоровой мантии до глобальной поверхности раздела 410 км расположен слой пониженных скоростей. Как следует из названия слоя, скорости сейсмических волн в нем ниже, чем в подкоровой мантии. Более того, на некоторых участках выявляются линзы, вообще не пропускающие S-волны, это даёт основание констатировать, что вещество мантии на этих участках находится в частично расплавленном состоянии. Этот слой называют астеносферой (от греч. «asthenes» - слабый и «sphair» - сфера ); термин введён в 1914 американским геологом Дж. Барреллом, в англоязычной литературе часто обозначаемый LVZ – Low Velocity Zone . Таким образом, астеносфера – это слой в верхней мантии (расположенный на глубине около 100 км под океанами и около 200 км и более под континентами), выявляемый на основании снижения скорости прохождения сейсмических волн и обладающий пониженной прочностью и вязкостью. Поверхность астеносферы хорошо устанавливается и по резкому снижению удельного сопротивления (до значений около 100 Ом . м).

Наличие пластичного астеносферного слоя, отличающегося по механическим свойствам от твёрдых вышележащих слоёв, даёт основание для выделения литосферы - твердой оболочки Земли, включающей земную кору и подкоровую мантию, расположенную выше астеносферы. Мощность литосферы составляет от 50 до 300 км. Нужно отметить, что литосфера не является монолитной каменной оболочкой планеты, а разделена на отдельные плиты, постоянно движущиеся по пластичной астеносфере. К границам литосферных плит приурочены очаги землетрясений и современного вулканизма.

Глубже раздела 410 км в верхней мантии повсеместно распространяются и P-, и S-волны, а их скорость относительно монотонно нарастает с глубиной.

В нижней мантии , отделённой резкой глобальной границей 670 км, скорость Р- и S-волн монотонно, без скачкообразных изменений, нарастает соответственно до 13,6 и 7,3 км/с вплоть до раздела Гутенберга.

Во внешнем ядре скорость Р-волн резко снижается до 8 км/с, а S-волны полностью исчезают. Исчезновение поперечных волн даёт основание предполагать, что внешнее ядро Земли находится в жидком состоянии. Ниже раздела 5150 км находится внутреннее ядро, в котором возрастает скорость Р-волн, и вновь начинают распространяться S-волны, что указывает на его твёрдое состояние.

Фундаментальный вывод из описанной выше скоростной модели Земли состоит в том, что наша планета состоит из серии концентрических оболочек, представляющих железистое ядро, силикатную мантию и алюмосиликатную кору.

Геофизическая характеристика Земли

Распределение массы между внутренними геосферами

Основная часть массы Земли (около 68%) приходится на ее относительно лёгкую, но большую по объёму мантию, при этом примерно 50% приходится на нижнюю мантию и около 18% – на верхнюю. Оставшиеся 32% общей массы Земли приходятся в основном на ядро, причем его жидкая внешняя часть (29% общей массы Земли) гораздо тяжелее, чем внутренняя твердая (около 2%). На кору остается лишь менее 1% общей массы планеты.

Плотность

Плотность оболочек закономерно возрастает к центру Земли (см. рис). Средняя плотность коры составляет 2,67 г/см 3 ; на границе Мохо она скачкообразно возрастает с 2,9-3,0 до 3,1-3,5 г/см 3 . В мантии плотность постепенно возрастает за счет сжатия силикатного вещества и фазовых переходов (перестройкой кристаллической структуры вещества в ходе «приспособления» к возрастающему давлению) от 3,3 г/см 3 в подкоровой части до 5,5 г/см 3 в низах нижней мантии. На границе Гутенберга (2900 км) плотность скачкообразно увеличивается почти вдвое – до 10 г/см 3 во внешнем ядре. Еще один скачок плотности – от 11,4 до 13,8 г/см 3 - происходит на границе внутреннего и внешнего ядра (5150 км). Эти два резких плотностных скачка имеют различную природу: на границе мантия/ядро происходит изменение химического состава вещества (переход от силикатной мантии к железному ядру), а скачок на границе 5150 км связан с изменением агрегатного состояния (переход от жидкого внешнего ядра к твердому внутреннему). В центре Земли плотность вещества достигает 14,3 г/см 3 .


Давление

Давление в недрах Земли рассчитывается на основании ее плотностной модели. Увеличение давления по мере удаления от поверхности обуславливается несколькими причинами:

    сжатием за счет веса вышележащих оболочек (литостатическое давление);

    фазовыми переходами в однородных по химическому составу оболочках (в частности, в мантии);

    различием в химическом составе оболочек (коры и мантии, мантии и ядра).

У подошвы континентальной коры давление составляет около 1 ГПа (точнее 0,9*10 9 Па). В мантии Земли давление постепенно растет, на границе Гутенберга оно достигает 135 ГПа. Во внешнем ядре градиент роста давления увеличивается, а во внутреннем ядре, наоборот, уменьшается. Расчетные величины давления на границе между внутренним и внешним ядрами и вблизи центра Земли составляют соответственно 340 и 360 ГПа.

Температура. Источники тепловой энергии

Протекающие на поверхности и в недрах планеты геологические процессы в первую очередь обусловлены тепловой энергией. Источники энергии подразделяются на две группы: эндогенные (или внутренние источники), связанные с генерацией тепла в недрах планеты, и экзогенные (или внешние по отношению к планете). Интенсивность поступления тепловой энергии из недр к поверхности отражается в величине геотермического градиента. Геотермический градиент – приращение температуры с глубиной, выраженной в 0 С/км. «Обратной» характеристикой является геотермическая ступень – глубина в метрах, при погружении на которую температура повысится на 1 0 С. Средняя величина геотермического градиента в верхней части коры составляет 30 0 С/км и колеблется от 200 0 С/км в областях современного активного магматизма до 5 0 С/км в областях со спокойным тектоническим режимом. С глубиной величина геотермического градиента существенно уменьшается, составляя в литосфере, в среднем около 10 0 С/км, а в мантии – менее 1 0 С/км. Причина этого кроется в распределении источников тепловой энергии и характере теплопереноса.


Источниками эндогенной энергии являются следующие.
1. Энергия глубинной гравитационной дифференциации , т.е. выделение тепла при перераспределении вещества по плотности при его химических и фазовых превращениях. Основным фактором таких превращений служит давление. В качестве главного уровня выделения этой энергии рассматривается граница ядро – мантия.
2. Радиогенное тепло , возникающее при распаде радиоактивных изотопов. Согласно некоторым расчётам, этот источник определяет около 25% теплового потока, излучаемого Землёй. Однако необходимо принимать во внимание, что повышенные содержания главных долгоживущих радиоактивных изотопов – урана, тория и калия отмечаются только в верхней части континентальной коры (зона изотопного обогащения). Например, концентрация урана в гранитах достигает 3,5 10 –4 %, в осадочных породах – 3,2 10 –4 %, в то время как в океанической коре она ничтожно мала: около 1,66 10 –7 %. Таким образом, радиогенное тепло является дополнительным источником тепла в верхней части континентальной коры, что и определяет высокую величину геотермического градиента в этой области планеты.
3. Остаточное тепло , сохранившееся в недрах со времени формирования планеты.
4. Твёрдые приливы , обусловленные притяжение Луны. Переход кинетической приливной энергии в тепло происходит вследствие внутреннего трения в толщах горных пород. Доля этого источника в общем тепловом балансе невелика – около 1-2 %.

В литосфере преобладает кондуктивный (молекулярный) механизм теплопереноса, в подлитосферной мантии Земли происходит переход к преимущественно конвективному механизму теплопереноса.

Расчёты температур в недрах планеты дают следующие значения: в литосфере на глубине около 100 км температура составляет около 1300 0 С, на глубине 410 км – 1500 0 С, на глубине 670 км – 1800 0С, на границе ядра и мантии – 2500 0 С, на глубине 5150 км – 3300 0 С, в центе Земли – 3400 0 С. При этом в расчёт принимался только главный (и наиболее вероятный для глубинных зон) источник тепла – энергия глубинной гравитационной дифференциации.

Эндогенное тепло определяет протекание глобальных геоднинамических процессов. в том числе перемещение литосферных плит

На поверхности планеты важнейшую роль имеет экзогенный источник тепла – солнечное излучение. Ниже поверхности влияние солнечного тепла резко снижается. Уже на небольшой глубине (до 20-30 м) располагается пояс постоянных температур – область глубин, где температура остаётся постоянной и равна среднегодовой температуре района. Ниже пояса постоянных температур тепло связано с эндогенными источниками.

Магнетизм Земли

Земля представляет собой гигантский магнит с магнитным силовым полем и магнитными полюсами, которые располагаются поблизости от географических, но не совпадают с ними. Поэтому в показаниях магнитной стрелки компаса различают магнитное склонение и магнитное наклонение.

Магнитное склонение – это угол между направлением магнитной стрелки компаса и географическим меридианом в данной точке. Этот угол будет наибольшим на полюсах (до 90 0) и наименьшим на экваторе (7-8 0).

Магнитное наклонение – угол, образуемый наклоном магнитной стрелки к горизонту. В приближении к магнитному полюсу стрелка компаса займёт вертикальное положение.

Предполагается, что возникновение магнитного поля обусловлено системами электрических токов, возникающих при вращении Земли, в связи с конвективными движениями в жидком внешнем ядре. Суммарное магнитное поле складывается из значений главного поля Земли и поля, обусловленного ферромагнитными минералами в горных породах земной коры. Магнитные свойства характерны для минералов – ферромагнетиков, таких как магнетит (FeFe 2 O 4), гематит (Fe 2 O 3), ильменит (FeTiO 2), пирротин (Fe 1-2 S) и др., которые являются полезными ископаемыми и устанавливаются по магнитным аномалиям. Для этих минералов характерно явление остаточной намагниченности, которая наследует ориентировку магнитного поля Земли, существовавшего во время образования этих минералов. Реконструкция места положения магнитных полюсов Земли в разные геологические эпохи свидетельствует о том, что магнитное поле периодически испытывало инверсию - изменение, при котором магнитные полюсы менялись местами. Процесс изменения магнтиного знака геомагнитного поля длится от нескольких сотен до несмкольких тысяч лет и начинается с интенсивного понижения напряженности главного магнитного поля Земли практически до нуля, затем устанавливается обратная полярность и через некоторое время следует быстрое восстановление напряженности, но уже противоположного знака. Северный полюс занимал место южного и, наоборот, с примерной частотой 5 раз в 1 млн. лет. Современная ориентация магнитного поля установилась около 800 тыс. лет назад.

Конспект урока на тему " Современные космические методы изучения Земли на службе

Цель : ознакомление с возможностями космических методов изучения Земли и применением результатов исследования в различных сферах деятельности человека.

Задач и:

    изучение способ съемки Земли из космоса

    ознакомление с историей и современным состоянием космического метода, достижениями отечественной и зарубежной космонавтики, перспективами развития

    ознакомление с космическими снимками и овладеть основами визуального дешифрирования космических изображений

Космические исследования и освоение космического пространства – одно из важнейших проявлений современной научно-технической революции. С покорением космоса человечество открыло много нового и неизвестного. Появилась возможность изучать свой дом – Землю на расстоянии. Так было положено начало космическим методам изучения Земли.

Космические методы относятся к дистанционным, т.к. исследуемый объект изучается на дистанции. Дистанционное зондирование – это получение информации об объекте без вступления с ним в прямой контакт.

Полученные таким образом сведения имеют в науке огромную ценность. Оказалось, что дистанционные космические методы имеют существенные преимущества перед наземными методами. Прежде всего, возможность получения изображения Земли в разных масштабах (от глобального до локального), оперативность, возможность повторить исследование неоднократно. Съемка из космоса позволяет охватить единым взглядом обширные пространства и одновременно рассмотреть многообразные детали строения местности, в том числе те, которые не заметны в поверхности Земли.

В своем развитии дистанционное зондирование (исследование) имеет несколько этапов:

    В 18 веке с помощью простейшей камеры-обскуры – светонепроницаемой коробки с небольшим отверстием в центре – получали рисованные снимки. Съемку делали с высоты птичьего полета на воздушном шаре. По таким снимкам составляли топографические карты местности. Это была сложная кропотливая работа.

    С открытием фотографии в 1839 г. дело пошло значительно быстрее. Впервые стало возможным постоянно и объективнофиксировать изображение. Первоначально фотоаппараты размещались на простых летательных аппаратах (воздушные шары, воздушный змей) и даже птицах. Это была аэрофотосъемка местности.

    Следующий шаг к тому, что мы теперь называем дистанционным зондированием, был связан с развитием самолетостроения. Уже в начале 20 века были получены аэрофотоснимки с самолетов. В годы Первой мировой войны выполняли аэрофотосъемку в разведывательных целях.

    В 30-ые годы 20 века аэрофотосъемка заменила наземную съемку и стала основным методом составления карт. Так, к середине 50-х годов с помощью аэрофотоснимков были составлены топографические карты всей территории СССР.

    Важнейшим толчком в развитии метода дистанционно зондирования послужило покорение космоса человеком. В 60-ые годы 20 века стало возможным получение снимков, сделанных из космоса. Это событие послужило толчком в разработке новых типов съемочных аппаратов. В США и СССР разрабатываются новые оптико-электронные системы – сканеры, выполняющие многозональнуюсъемка земной поверхности.

    В 80-ые годы стало возможным широкое применение комических снимков во всех областях изучения земли.

В настоящее время вокруг Земли движется множество спутников-съемщиков разных стран, которые регулярно делают съемку Земли и поставляют на Землю тысячи разных снимков земной поверхности.

Для получения снимков различной степени детальности, спутники запускают на разные высоты. Выделяют три основных высотных яруса их полета :

    Спутники самого верхнего яруса , запускаемые на высоту 36 000 км, летают над экватором. Их называют геостационарными, поскольку, вращаются вместе с земным шаром и делая полны оборот вокруг земли ровно за одни сутки. Такие спутник как бы висят в небе над одной и той же точкой земли. Геостационар может выполнить съемку почти целого полушария Земли.

К геостационарным спутникам относятся российский «Электро», спутник Евросоюза «М eteosat », американский « GOES - W » и « GOES - Е», японский « GMS », индийский « Insat ». Они ведут непрерывное глобальное «патрулирование» планеты, каждые полчаса передавая по радиоканалам обзорные снимки.

    Спутники среднего яруса , орбита которых проходит над полюсами (поэтому их называют полярными), летают на высоте от 600 до 1500 км. Для съемки всей земной поверхности им требуется от одних суток до 2-3 недель.

К спутникам среднего яруса относятся: российский спутник «Метеор 1» и «Метеор2», американский спутник NOAA , спутники России «Ресурс – П», «Ресурс – О», американский Landsat , французский SPOT .

    Спутники самого нижнего яруса , летающие на высоте 200-300 км, ведут детальную съемку отдельных участков земной поверхности, расположенных вдоль трассы полета.

Космические системы наблюдения Земли подразделяются по своему назначения на метеорологические, ресурсные, океанологические, картографические, навигационные, научно-исследовательские.

Для получения снимков со спутников применяют различную съемочную аппаратуру. Сравнивая ее с человеческими глазами, можно сказать, что эти глаза бывают разными – дальнозорким и близорукими, одни видят в темноте, другие сквозь туман и облака, есть даже «дальтоники», которые видят объекты в искаженных цветах.

Различают следующие группы таких аппаратов:

    Фотографические аппараты . Получаемые таким аппаратом снимки называют плановые, т.к. по геометрическим свойствам они приближены к плану местности. С помощью космических фотоаппаратов получают снимки только в видимом диапазоне.

    Спутниковые сканеры . В отличие от фотоаппаратов работают во многих диапазонах электромагнитного спектра (получают снимки не только в видимом, но и инфракрасном диапазоне)

    Радиолокаторы . Если фотоаппараты и сканеры регистрируют отраженное объектами солнечное или собственное излучение, то радиолокаторы сами «освещают» местность радиолучом и принимают отраженный радиосигнал. Радиолуч как бы ощупывает, зондирует поверхность, чутко реагируя на ее шероховатость. Поэтому на радиолокационных снимках видны даже небольшие неровности рельефа.

В результате выполнения космических съемок накоплен многомиллионный фонд снимков. Для того, чтобы эффективно использовать эти изображения, они систематизированы, сгруппированы по возможностям их применения. При всем многообразии снимков у них можно выделить ряд общих характеристик:

    Масштаб снимка . Снимки, как и карты, различаются по масштабу. Они бывают:

    крупномасштабные – в 1 см – 10 м и даже крупнее.

    среднемасштабные

    мелкомасштабные (в 1 см – 100 км)

Масштаб снимка зависит от высоты выполнения съемки, фокусного расстояния аппарата, кривизны земной поверхности. От масштаба зависит обзорность снимка: на крупномасштабных снимках изображены лишь отдельные дома, на мелкомасштабных можно увидеть целые континенты.

    Обзорность снимков – это охват территории одним снимком.

По обзорности снимки разделяют: глобальные (охватываю всю планету), крупнорегиональные (охватывают крупные регионы мира: Европа, Азия и т.д.), региональные (регион и его часть: Бельгия, Московская область); локальные (изображают небольшой участок местности: небольшой город, микрорайон)

    Разрешение . С масштабом снимков связана их способность воспроизводить мелкие объекты и отдельные детали. Крупномасштабные снимки имеют разрешение в десятки сантиметров, т.е. на них могут быть видны даже ветки деревьев. Мелкомасштабные снимки имеют разрешение в несколько км, в результате наблюдатель видит очень большие участки леса или всю лесную зону.

    Ретроспективность. Снимок объективно фиксирует состояние местности, отдельных объектов и явлений на момент съемки. Сопоставляя снимки разных лет, можно оценить динамику природных процессов: например, насколько отступил ледник, как растут овраги, изменяются площади лесов.

    Стереоскопичность. Два снимка одно и того же участка местности, полученные с разных точек, образуют стереоскопическую (т.е. воссоздающую объемное изображение) пару снимков. Вооружившись стереоскопом, можно наблюдать по этим снимкам не плоское изображение, а объемную и очень выразительную модель местности. Это замечательное свойство снимков важно для изучения рельефа земной поверхности и составления карт.

    Спектральный диапазон .Современная съемочная аппаратура способна делать съемку в разных диапазонах электромагнитного излучения.

По этому признаку выделяют три группы снимков:

    в видимом диапазоне, который называют световым

    в тепловом инфракрасном диапазоне

    в радиодиапазоне.

От выбора диапазона зависит то, какие объекты будут изображены на снимках. На снимках в видимом диапазоне изображается все, что видно человеческим глазом; снимки в инфракрасном тепловом диапазоне позволяют определить температуру поверхности, а радиодиапазоне – ее шероховатость (т.е. неровности поверхности). Очень часто одновременно получают не один, а целую серию снимков в разных спектральных диапазонах. Такие снимки называются многозональными .

С космическим методом изучения земли, появлением космической съемки и съемочной аппаратуры, расширились возможности визуальных наблюдений. Человеческий глаз воспринимает только световое излучение, а современные приборы позволяют «видеть» земную поверхность в невидимых лучах: ультрафиолетовых, инфракрасных, в радиодиапазоне. И каждый прибор «видит» то, что не различают другие.

Спутниковая информация представляет огромную ценность не только для науки. Она позволяет решить ряд задач во многих отраслях экономики. Например: в сельском хозяйстве. Так, спутниковая информация позволяет обнаружить районы, пораженные засухой, вредителями, техногенными выбросами. Интересный факт: В 70-е и 80-е гг. Советский Союз закупал в больших объемах зерно за рубежом – в США, Канаде и других странах. Нет сомнения, что зарубежные партнеры при определении цены учитывали виды на урожай и использовали спутниковую информацию для оценки состояния сельхозугодий в СССР.

Активно используется космический мониторинг в борьбе с лесными пожарами. По данным, полученным со спутников, можно определить координаты очагов пожаров, площадь и объем сгоревшего леса, величину экономического ущерба. Например: на фото, сделанном в районе Амурской области летом 2014 года, четко выделяются очаги пожаров с дымовыми шлейфами.

По космоснимкам можно осуществлять экологический контроль атмосферного воздуха, отслеживая загрязнение снежного покрова и дымовые выбросы промышленных предприятий. На рисунке представлена карта экологического состояния воздушного бассейна над Москвой. Как видно, наиболее загрязненными районами являются районы железнодорожных вокзалов и территория вокруг завода имени Лихачева.

Данные дистанционного зондирования Земли, благодаря периодичности спутниковой съемки, позволяют оперативно оценить обстановку в районах возникновения стихийных бедствий (наводнений, циклонов, засух, землетрясений, пожаров) и служат основой для своевременного прогноза природных катастроф.

Пример мы видим на слайде: представлены два снимка одно и того же участка побережье Индонезии в декабре 2004 года с интервалом в несколько часов. Хорошо видны последствия цунами, охватившего побережье Индийского океана.

На следующих фотографиях, сделанных с интервалом 10-15 лет, можно наблюдать возникновение проблемы, связанной с пересыханием озера Чад. Подобное явление переживает и Аральское море.

Данные космического мониторинга можно использовать для принятия мер по предупреждению возникновения чрезвычайных ситуаций. Так, регулярный космический мониторинг ледовой обстановки на реках Сибири в весенний период позволяет своевременно выявлять места возникновения ледовых заторов с целью их ликвидации (например, взрывным методом) и тем самым не допустить возникновения сильного наводнения, приводящего к большому социальному и материальному ущербу.

Одной из наиболее важных задач, которую можно решить с помощью данных дистанционного зондирования Земли, является контроль развития инфраструктуры территории для целей регионального планирования. Как правило, при решении задач регионального планирования используются топографические карты. Но, как показывает опыт, данные карты перестают отражать истинное положение дел уже через несколько лет после составления. Появляются новые дороги, населенные пункты и др., не намеченные на карте. Все это в значительной степени затрудняет процесс регионального планирования. В этой связи применение систем дистанционного зондирования Землиоткрывает большие возможности для организации эффективного регионального планирования, особенно в условиях бурного развития страны или отдельных ее территорий.

Рисунок иллюстрирует вышесказанное. Как видно, сопоставление топографической карты района Туапсе, составленной в 1994 г., с космическим снимком того же района 2009 г. наглядно показывает преимущества использования систем дистанционного зондирования Земли. По снимку можно провести уточнение береговой линии, выявить вновь появившиеся объекты, не отмеченные на топографической карте.

Мы убедились, что в настоящее время космические снимки необходимы не только географам, но и метеорологам, геологам, картографам. С помощью космических снимков изучают строение земной коры, ищут полезные ископаемые, обнаруживают лесные пожары, исследуют богатые рыбой районы в океане. Таким образом, космический метод изучения Земли популярен, актуален, представляет неограниченные возможности.

Активно использовать данные дистанционного зондирования Земли имеют возможность не все отрасли и предприятия страны. Некоторые субъекты Федерации ввели в практику применение космоснимков для решения региональных задач. На территории Ярославской области крупными организациями, которые ввели в практику использование космоснимков являются «Геомониторинг» для исследования подземных вод, компании «Кадастр» и «Недра». Мы обнаружили, что существует проект программы использования данных дистанционного зондирования Земли для планирования территории Ярославля, разработке его генерального плана. С помощью снимка, сделанного из космоса, можно оперативно определить наиболее загруженные дороги с тем, чтобы с большей эффективностью спланировать строительство новых транспортных магистралей. Данные дистанционного зондирования пригодятся в планировании городской застройки и пригородных территорий, в решении экологических вопросов, для планирования системы озеленения и санитарных зон предприятий. Будем надеяться, что современные достижения в области космического мониторинга будут основой эффективного управления нашего региона.

Уже сейчас у каждого из нас есть персональный доступ к результатам космического зондирования Земли для использования в образовательных целях. Еще несколько лет назад это было бы фантастикой. Но ведь запуск первого искусственного спутника Земли и первый полет человека в космос даже за несколько лет до их осуществления тоже казался необыкновенной фантастикой.

Знание обладает великолепной особенностью – постоянно напоминает, что оно лишь трамплин в будущее и слишком много нам еще не известно. Выход человека в космос позволил решить много новых задач и сделать новые открытия. Но процесс познания таков, что, решая одни задачи, мы сталкивается с новыми нерешенными проблемами, ведь сам процесс познания бесконечен.

В свое время я тоже заинтересовался тем, что находится у нас под ногами, и начал изучать ее подробнее. Проблема изучения внутреннего строения и состава нашей планеты с давних времен привлекала внимание ученых. Наиболее значимых результатов удалось добиться в XX веке, потому что по сложности и важности эта задача стоит в одном ряду с изучением космоса.

Методы изучения Земли

При изучении внутреннего строения Земли используются различные методы, которые можно объединить в две группы: методы прямого наблюдения и методы косвенного исследования. Первый тип – наиболее простой для понимания, ученые просто изучают горные породы, шахты и материалы, которые получают при бурении скважин. Интересно, что сегодня самые глубокие шахты достигают глубины 6 км, нефтяные скважины – 9 км. Отдельно стоит упомянуть об очень занимательной Кольской сверхглубокой скважине, расположенной на Кольском полуострове. Её глубина достигает 12,5 километров, что делает ее самой глубокой скважиной в мире. Она была создана специально для научно-исследовательской работы. Короче говоря, методом прямого наблюдения можно узнать о строении Земли до глубины около 20-ти километров.


Косвенные методы исследования

Другой, более сложный, тип методов исследования – косвенные методы. Они используются для изучения недр Земли, т.е. того, что находится ниже 20-ти км. Вот их перечень:

  • Сейсмический.
  • Гравиметрический.
  • Геомагнитный.
  • Геоэлектрический.

Самый важный из них – сейсмический, который использует сейсмические волны, они изменяют свою скорость распространения в зависимости от материала, через который они проходят. Этих волн существует два типа: продольные и поперечные.

Проще говоря, данный метод позволил определить границы, отделяющие разные оболочки Земли друг от друга, и установить то, в каком состоянии они находятся: вязком, жидком, твердом и т.д.


Итог

Сегодня мы знаем, что у Земли есть три оболочки: земная кора, мантия и ядро. Сейсмическая модель внутреннего строения Земли выглядит так, как показано на рисунке выше.

Методы исследования строения Земли

Большинство частных наук о Земле составляют науки о ее поверхности, включая атмосферу. Пока человек не проник в глубь Земли далее 12 – 15 км (Кольская сверхглубокая скважина). С глубин примерно до 200 км разными путями выносится наружу вещество недр и оказывается доступным для исследования. Сведения о более глубоких слоях добываются косвенными методами:

Регистрацией характера прохождения сейсмических волн разных типов через земные недра, изучением метеоритов как реликтовых остатков прошлого, отражающих состав и структуру вещества протопланетного облака в зоне формирования планет земной группы. На этой основе делаются выводы о совпадении вещества метеоритов определенного типа с веществом тех или других слоев земных глубин. Выводы о составе земных недр, опирающиеся на данные о химико-минералогическом составе выпадающих на землю метеоритов не считаются надежными, так как нет общепризнанной модели образования и развития Солнечной системы.

Строение Земли

Зондирование недр земли сейсмическими волнами позволило установить их оболочечное строение и дифференцированность химического состава.

Различают 3 главные концентрически расположенные области: ядро, мантия, кора. Ядро и мантия в свою очередь подразделяются на дополнительные оболочки, различающиеся физико-химическими свойствами (рис.51).

Рис.51 Строение Земли

Ядро занимает центральную область земного геоида и разделяется на 2 части. Внутреннее ядро находится в твердом состоянии, оно окружено внешним ядром , пребывающим в жидкой фазе. Между внутренним и внешним ядрами нет четкой границы, их различает переходная зона . Считается, что состав ядра идентичен составу железных метеоритов. Внутреннее ядро состоит из железа (80 %) и никеля (20%). Соответствующий сплав при давлении земных недр имеет температуру плавления порядка 4500 0 С. Внешнее ядро содержит железо (52 %) и эвтектику (жидкая смесь твердых веществ), образуемую железом и серой (48 %). Не исключается небольшая примесь никеля. Температура плавления такой смеси оценивается 3200 0 С. Чтобы внутренне ядро оставалось твердым, а внешнее жидким, температура в центре Земли не должна превышать 4500 0 С, но и не быть ниже 3200 0 С. С жидким состоянием внешнего ядра связывают представления о природе земного магнетизма.

Палеомагнитные исследования характера магнитного поля планеты в далеком прошлом, основанные на измерениях остаточной намагниченности земных пород, показали, что на протяжении 80 млн. лет имело место не только наличие напряженности магнитного поля, но и многократное систематическое перемагничивание, в результате которого северный и южный магнитные полюса Земли менялись местами. В периоды смены полярности наступали моменты полного исчезновения магнитного поля. Следовательно, земной магнетизм не может создаваться постоянным магнитом за счет стационарной намагниченности ядра или какой – то его части. Предполагают, что магнитное поле создается процессом, названным эффектом динамомашины с самовозбуждением. Роль ротора (подвижного элемента) динамо может играть масса жидкого ядра, перемещающаяся при вращении Земли вокруг своей оси, а система возбуждения образуется токами, создающими замкнутые петли внутри сферы ядра.

Плотность и химический состав мантии, по данным сейсмических волн, резко отличаются от соответствующих характеристик ядра. Мантию образуют различные силикаты (соединения, в основе которых кремний). Предполагается, что состав нижней мантии подобен составу каменных метеоритов (хондритов).

Верхняя мантия непосредственно связана с самым внешним слоем – корой. Она считается «кухней», где приготовляются многие слагающие кору породы или их полуфабрикаты. Полагают, что верхняя мантия состоит из оливина (60%), пироксена (30 %) и полевого шпата (10 %). В определенных зонах этого слоя происходит частичное плавление минералов и образуются щелочные базальты – основа океанической коры. Через рифтовые разломы среднеокеанических хребтов базальты поступают из мантии на поверхность Земли. Но этим не ограничивается взаимодействие коры и мантии. Хрупкая кора, обладающая высокой степенью жесткости, вместе с частью подстилающей мантии образует особый слой толщиной порядка 100 км, называемой литосферой. Этот слой опирается на верхнюю мантию, плотность которой заметно выше. Верхняя мантия обладает особенностью, определяющей характер ее взаимодействия с литосферой: по отношению к кратковременным нагрузкам она ведет себя как жесткий материал, а по отношению к длительным нагрузкам – как пластичный. Литосфера создает постоянную нагрузку на верхнюю мантию и под ее давлением подстилающий слой, называемой астеносферой , проявляет пластичные свойства. Литосфера «плавает» в нем. Такой эффект называют изостазией.

Астеносфера в свою очередь опирается на более глубокие слои мантии, плотность и вязкость которых возрастает с глубиной. Причина этого – сдавливание пород, вызывающее структурную перестройку некоторых химических соединений. Например, кристаллический кремний в обычном состоянии имеет плотность 2,53 г/см 3 , под действием возросших давлений и температур он переходит в одну из своих модификаций, названную стишовитом, плотность, которой достигает 4,25 г/см 3 . Силикаты, слагаемые такой модификацией кремния, имеют очень компактную структуру. В целом же литосфера, астеносфера и остальная мантия могут рассматриваться в качестве трехслойной системы, каждая из частей которой подвижна относительно других компонентов. Особой подвижностью отличается легкая литосфера, опирающаяся на не слишком вязкую и пластичную астеносферу.

Земная кора, образующая верхнюю часть литосферы, в основном слагается из восьми химических элементов: кислород, кремний, алюминий, железо, кальций, магний, натрий и калий. Половина всей массы коры приходится на кислород, который содержится в ней в связанных состояниях, в основном в виде окислов металлов. Геологические особенности коры определяются совместными действиями на нее атмосферы, гидросферы и биосферы – этих трех внешних оболочек планеты. Состав коры и внешних оболочек непрерывно обновляется. Благодаря выветриванию и сносу вещество континентальной поверхности полностью обновляется за 80 – 100 млн. лет. Убыль веществ континентов восполняется вековыми поднятиями их коры. Жизнедеятельность бактерий, растений и животных сопровождается полной сменой содержащейся в атмосфере углекислоты за 6-7 лет, кислорода – за 4 000 лет. Вся масса гидросферы (1,4 · 10 18 т) целиком обновляется за 10 млн. лет. Еще более фундаментальный круговорот вещества поверхности планеты протекает в процессах, связывающих все внутренние оболочки в единую систему.



Существуют стационарные вертикальные потоки, называемые мантийными струями, они поднимаются из нижней мантии в верхнюю и доставляют туда горючее вещество. К явлениям той же природы относят внутриплитовые «горячие поля», с которыми, в частности, связывают наиболее крупные аномалии в форме земного геоида. Таким образом образ жизни земных недр чрезвычайно сложен. Отклонения от мобилистских положений не подрывают идею тектонических плит и их горизонтальных движений. Но не исключено, что в недалеком будущем появится более общая теория планеты, учитывающая горизонтальные движения плит и незамкнутые вертикальные переносы горючего вещества в мантии.

Самые верхние оболочки Земли – гидросфера и атмосфера – заметно отличаются от других оболочек, образующих твердое тело планеты. По массе это совсем незначительная часть земного шара, не более 0,025 % всей его массы. Но значение этих оболочек в жизни планеты огромно. Гидросфера и атмосфера возникли на ранней стадии формирования планеты, а может быть, и одновременно с ее формированием. Нет сомнений, что океан и атмосфера существовали 3,8 млрд. лет назад.

Образование земли шло в русле единого процесса, вызвавшего химическую дифференциацию недр и возникновение предшественников современных атмосферы и гидросферы. Вначале из зерен тяжелых нелетучих веществ оформилось протоядро Земли, затем оно очень быстро присоединило вещество, ставшее впоследствии мантией. А когда Земля достигла примерно размеров Марса, начался период ее бомбардировки планетозималиями. Удары сопровождались сильным локальным разогревом и плавлением земных пород и планетозималий. При этом выделялись газы и пары воды, содержащиеся в породах. А так как средняя температура поверхности планеты оставалась низкой, пары воды конденсировались, образуя растущую гидросферу. В этих столкновениях Земля теряла водород и гелий, но сохраняла более тяжелые газы. Содержание изотопов инертных газов в современной атмосфере позволяет судить об источнике, их породившем. Этот изотопный состав согласуется с гипотезой об ударном происхождении газов и воды, но противоречит гипотезе о процессе постепенной дегазации земных недр как источнике образования атмосферы и гидросферы. Океан и атмосфера безусловно существовали не только на протяжении всей истории Земли как сформировавшейся планеты, но и в течение основной фазы аккреции, когда протоземля имела размеры Марса.

Идея ударной дегазации, рассматриваемой как основной механизм образования гидросферы и атмосферы, получает все большее признание. Лабораторными экспериментами подтверждалась способность ударных процессов выделять из земных пород заметные количества газов, в том числе и молекулярного кислорода. А это означает, что некоторое количество кислорода присутствовало в атмосфере земли еще до того, как возникла на ней биосфера. Идеи абиогенного происхождения некоторой части атмосферного кислорода выдвигались и другими учеными.

Обе внешние оболочки – атмосфера и гидросфера – плотно взаимодействуют друг с другом и с остальными оболочками Земли, особенно с литосферой. На них оказывают прямое воздействие Солнце и Космос. Каждая из этих оболочек представляет собой открытую систему, обдающую определенной автономией и своими внутренними законами развития. Все, кто изучает воздушный и водный океаны, убеждены. Что объекты исследования обнаруживают удивительную тонкость организации, способность к саморегуляции. Но при этом ни одна из земных систем не выпадает из общего ансамбля, и их совместное существование демонстрирует не просто сумму частей, а новое качество.

Среди сообщества оболочек Земли особое место занимает биосфера. Она захватывает верхний слой литосферы, почти всю гидросферу и нижние слои атмосферы. Термин «биосфера» ввел в науку в 1875 г. австрийский геолог Э. Зюсс (1831 – 1914). Под биосферой понималась совокупность заселяющей поверхность планеты живой материи вместе со средой обитания. Новый смысл этому понятию придал В.И. Вернадский, рассматривавший биосферу как системное образование. Значимость этой системы выходит за пределы чисто земного мира, который представляет собой звено космического масштаба.

Возраст Земли

В 1896 году было открыто явление радиоактивности, это привело к развитию методов радиометрической датировки. Суть его заключается в следующем. Атомы некоторых элементов (урана, радия, тория и других) не остаются постоянными. Исходный, называемый материнский элемент спонтанно распадается, превращаясь в стабильный дочерний. Например, уран – 238, распадаясь, превращается в свинец – 206, а калий – 40 – в аргон – 40. Измеряя количество материнских и дочерних элементов в минерале, можно вычислить время, прошедшее с момента его образования: чем больше процент дочерних элементов, тем старше минерал.

Согласно радиометрической датировке, самым старым на Земле минералам 3,96 миллиарда лет, а самым старым монокристаллам – 4,3 миллиарда. Ученые считают, что сама Земля старше, потому что радиометрический отсчет ведется от момента кристаллизации минералов, а планета существовала в расплавленном состоянии. Эти данные вкупе с результатами исследований изотопов свинца в метеоритах позволяют сделать вывод о том, что вся Солнечная система сформировалась приблизительно 4,55 миллиарда лет тому назад.

5.5. Происхождение материков. Эволюция земной коры: тектоника литосферных плит

В 1915 году немецкий геофизик А. Вегенер (1880 - 1930) предположил, исходя из очертания континентов, что в геологический период существовал единый массив суши, названный им Пангеей (от греч. «вся земля»). Пангея раскололась на Лавразию и Гондвану. 135 млн. лет назад Африка отделилась от Южной Америки, а 85 млн. лет назад Северная Америка – от Европы; 40 млн. лет назад Индийский материк столкнулся с Азией и появились Тибет и Гималаи.

Решающим аргументом в пользу принятия данной концепции стало эмпирическое обнаружение в 50 – х гг.XX столетия расширения дна океанов, что послужило отправной точкой создания тектоники литосферных плит. В настоящее время считается, что континенты расходятся под влиянием глубинных конвективных течений, направленных вверх и в стороны и тянущих за собой плиты, на которых плавают континенты. Эту теорию подтверждают и биологические данные о распространении животных на нашей планете. Теория дрейфа континентов, основанная на тектонике литосферных плит, ныне общепризнанна в геологии.

Также в пользу этой теории говорит то, что береговая линия восточной части Южной Америки поразительно совпадает с береговой линией западной части Африки, а береговая линия восточной части Северной Америки – с береговой линией западной части Европы.

Одна из современных теорий, объясняющих динамику процессов в земной коре, называется теорией неомобилизма . Ее зарождение относится к концу 60 – х годов XX века и вызвано сенсационным открытием на дне океана цепи горных хребтов, оплетающих земной шар. Ничего подобного на суше нет. Альпы, Кавказ, Памир, Гималаи, даже вместе взятые, несравнимы с обнаруженной полосой срединных хребтов Мирового океана. Ее длина превышает 72 тыс. км.

Человечество как бы открыло неведомую прежде планету. Наличие узких впадин и больших котловин, глубоких ущелий, тянущихся почти непрерывно вдоль оси срединных хребтов, тысячи гор, подводных землетрясений, действующих вулканов, сильных магнитных, гравитационных и тепловых аномалий, горячих глубоководных источников, коллосальных скоплений железомарганцевых конкреций – все это обнаружено за короткий промежуток времени на дне океана.

Как выяснилось, океанической коре свойственно постоянное обновление. Она зарождается на дне рифта, секущего срединные хребты по оси. Сами хребты – из той же купели и тоже молоды. Океаническая кора «умирает» в местах расколов – там, где она подвигается под соседние плиты. Опускаясь в глубь планеты, в мантию и оплавляясь, она успевает отдать часть себя вместе с накопившимися на ней осадочными отложениями на строительство материковой коры. Расслоение недр Земли по плотности рождает своего рода течения в мантии. Эти течения обеспечивают поставку материала для разрастания океанического дна. Они же заставляют дрейфовать глобальные плиты с выступающими из Мирового океана континентами. Дрейф крупных плит литосферы с возвышающейся на них сушей и называется неомобилизмом.

Перемещение материков подтверждено в настоящее время наблюдениями с космических аппаратов. Нарождение океанской коры исследователи увидели своими глазами, приблизившись ко дну Атлантики, Тихого и Индийского океанов, Красного моря. Используя современную технику глубоководного погружения, акванавты обнаружили образование трещин в растягиваемом дне и молодые вулканчики, поднимающиеся из таких «щелей».


Введение

Краткий исторический обзор

Изученность формы и размеров Земли на современном этапе

Методы изучения фигуры Земли

1 Гравиметрический метод

2 Определение общего земного сфероида

3 Космический метод

4 Геометрический метод

Заключение

Список использованных источников


Введение


Определение формы и размеров Земли является одной из главных задач современной науки.

Человек всегда хотел ориентироваться в окружающем мире. Человек стремился представить Землю в виде изображения которое помогло бы ему ориентироваться в окружающем мире.

Так еще в каменном веке поверхность Земли изображалась в виде рисунка на костях животных, на стенах пещер и т. д. На этих рисунках были обозначены места жительства, основные тропы, реки, в общем все необходимое для жизни человека в то время.

С пришествие времени на картах стали изображать границы владений разных государств и именно после этого у человека стал серьезный вопрос, - Как изобразить поверхность Земли максимально точно для лучшего ориентирования в этом мире?

Но Земля ни шар, ни эллипс и не имеет форму, которую можно выразить математически. Поэтому человечество стремилась максимально точно определить истинную форму Земли, используя разные методы.

Позже с изучением гравиметрии у человека появилась новая цель в изучении формы Земли - это максимально точно определить форму и размер Земли не только для составления карт, но и для построения физических теорем. Зная которые человек лучше воспринимал природу и процессы, проходящие в ней.

Поэтому я с уверенность могу говорить, что данная тема очень актуальна на современном этапе.

Основная цель данной курсовой работы - дать описание основных методов определения формы и размеров Земли.

Для решения поставленной цели нужно выполнить следующие задачи:

дать краткий исторический обзор в изучении формы и размеров Земли.

дать характеристику изученности формы и размеров Земли на современном этапе.

Данная курсовая работа состоит из введения, 3 разделов, которые структурированы на пункты, заключения и списка использованных источников, и содержит 3 рисунка.


1. Краткий исторический обзор


Земля - третья планета от солнца и наиболее крупный и наиболее сложный динамический объект из всех внутренних планет. (рисунок 1)


Рисунок 1


Земля имеет форму, близкую к шарообразной. Радиус шара, равновеликого Земле, - 6371 км. Земля обращается вокруг Солнца и вращается вокруг своей оси. Вокруг Земли обращается один естественный спутник - Луна.

Обычно под фигурой Земли понимают тело, ограниченное ее физической поверхностью и невозмущенной поверхностью морей и океанов. При определении фигуры Земли не нужно подробно изображать ее физическую поверхность в виде карт, достаточно определить положение на ней сети точек в единой пространственной системе координат. В формировании Земли существенную роль играло тепло недр и процессы радиоактивного распада. Формирование земной коры происходило в течении длительного периода, который по данным палеонтологии разделен на эры, периоды, эпохи, века. Большую роль в эволюции Земли сыграло наличие гидросферы и появление органической жизни на ней.

Представления о форме Земли. Со школьных лет мы привыкли считать Землю шаром, и никаких сомнений у нас на этот счет не возникает. Между тем вопрос о форме Земли далеко не так прост, как он представляется нам в настоящее время. Потребовалось очень много труда и времени, прежде чем человечество сумело разрешить этот очень важный и сложный вопрос.

Представление древнейших народов о Земле исходило из того, что они видели. Земля - обширное плоское пространство, над которым опрокинут твердый свод неба, усеянный звездами. Это представление в различных вариациях мы встречаем у всех древнейших народов, населявших западную Азию и юго-восточную Европу.

Однако по мере накопления наблюдений постепенно возникла мысль о выпуклой форме Земли. Скрывающиеся за горизонтом предметы, лучи восходящего солнца, освещающие сначала вершины, а потом основания гор, и другие факты привели к необходимости признать, что Земля имеет форму выпуклого вверх щита или плоско-выпуклого купола. Подобные представления мы находим у древних вавилонян, индусов и некоторых других культурных народов древнего Востока.

Форма и размеры Земли. По современным космогоническим представлениям Земля образовалась примерно 4,6-4,7 млрд. лет назад из захваченного притяжением Солнца протопланетного облака. На образование первых, наиболее древних из изученных горных пород потребовалось 100-200 млн. лет.

Ее орбита находится между орбитами Венеры и Марса. Она движется вокруг Солнца со средней скоростью 29,765 км/с по эллиптической, близкой к круговой орбите (эксцентриситет 0,0167). Среднее расстояние от Солнца 149,6 млн. км, В перигелии оно уменьшается до 147 млн. км, а в афелии увеличивается до 152 млн. км. Период одного обращения по орбите 365,24 солнечных суток. Вращение Земли вокруг собственной оси происходит со средней угловой скоростью 7,3·10-5рад/с, что примерно соответствует периоду в 23 ч 56 мин 4,1 с. Линейная скорость поверхности Земли на экваторе - около 465 м/с. Ось вращения наклонена к плоскости эклиптики под углом 66° 33? 22??. Этот наклон и годовое обращение Земли вокруг Солнца обуславливают исключительно важную для климата Земли смену времен года, а ее вращение вокруг оси - смену дня и ночи. Имеются и небольшие нерегулярные вариации продолжительности суток.

В целом по форме Земля близка к эллипсоиду, сплюснутому у полюсов и растянутому в экваториальной зоне. В нашей стране принят термин «эллипсоид Красовского» Средний радиус Земли 6371 км, полярный - 6356 км, экваториальный - 6378 км. Масса Земли 5,976·1024 кг, средняя плотность 5518 кг/м3. Площадь поверхности Земли 510,2 млн. км2.

Фактически уровневая поверхность Земли не совпадает с поверхностью эллипсоида. Геоид - условное наименование истинной фигуры Земли, предложенное в 1873 г. немецким ученым И. Листингом (геоид - землеподобный). Геоид это геометрически сложная поверхность равных значений потенциала силы тяжести, совпадающая с невозмущенной поверхностью Мирового океана и продолженная под континентами. Он близок к эллипсоиду со сжатием 1: 298,2.Благодаря суточному вращению Земли существуют единственные неподвижные точки земной поверхности - географические полюса - это точки пересечения воображаемой земной оси с земной поверхностью. Положение географических полюсов меняется с периодом 434 суток с амплитудой 0,36??. Кроме того, имеются и небольшие сезонные их перемещения.

По отношению к полюсам определяют экватор, проводят параллели и меридианы. Экватор - это линия на глобусе или карте, расположенная на одинаковом расстоянии от полюсов. Его длина 40076 км. Параллели - линии, параллельные экватору. Это круги мысленного сечения Земли плоскостями, перпендикулярными ее оси. По параллелям определяют географическую широту - расстояние в градусах от экватора до какой-либо точки. Она изменяется от 90º с.ш. до 90º ю.ш. Меридианы - линии, соединяющие полюса. Это круги, образованные пересечением земного шара плоскостями, проходящими через земную ось. По меридианам определяют географическую долготу - расстояние в градусах от начального меридиана до какой-либо точки. Долготы бывают западные и восточные и изменяются от 0 до 180°.

Представление о фигуре и размерах Земли создавалось постепенно, на основе наблюдений, измерений и расчетов.

Уже в VII в до н.э. древнегреческие ученые высказали предположение о шарообразности Земли. В IV веке до н.э. Аристотель собрал уже имеющиеся доказательства шарообразности Земли, дополнил и обосновал их (круглая тень Земли при затмениях, изменение вида звездного вида и т.д.). Эратосфен Киренский во II веке до н.э. определил близкую к действительной длину большого круга (40 000 км) и одного градуса меридиана (110,6 м. - действительная 111,2 м.).

Кругосветные путешествия только подтвердили доказательства шарообразности. С появлением точных методов измерений расстояний и углов (триангуляция) в 1669-70 гг. французские ученый Жан Пикар точно измерил длину меридиана и пришел к выводу, что Земля не идеальный шар с радиусом - 6371,7 км. Французский астроном Рише проделав опыты с маятником пришел к сходным выводам.

Ньютон сформулировал закон об обязательном отклонении фигуры вращающегося тела от шара. Одновременно с Христианом Гюйгенсом он определили полярное сжатие Земли.


2. Изученность формы и размеров Земли на современном этапе


Учение о Земле как о шаре. По мере расширения знаний стал накапливаться уже более точный материал об изменении длины полуденной тени на разных широтах Земли. История не сохранила нам точных сведений о том, когда и где впервые появилось представление о шарообразности Земли. Но есть основания думать, что зародились они еще у вавилонян, а потом перешли в древнюю Грецию.

Так, например, греческий мыслитель Парменид уже определенно говорил о Земле как о шаре. В работах известного греческого философа Аристотеля приведен целый ряд весьма убедительных доказательств шарообразной формы Земли.

Ученик Аристотеля Дикеарх уже делал попытку измерить Землю, взяв за основание два пункта, расположенные на одном меридиане. Согласно Дикеарху окружность Земли имеет около 300 тыс. стадий2, т. е. около 47 тыс. км. Во всяком случае, эта величина не так уж далека от действительных размеров.

Гораздо полнее сохранились сведения об измерении меридиана, произведенные александрийским ученым Эратосфеном. Эратосфену было известно, что в городе Сиене, расположенном к югу от Александрии, солнце один раз в году, 22 июня, т. е. в день летнего солнцестояния, в полдень освещает дно самых глубоких колодцев.

Иначе говоря, в этот день в полдень в Сиене солнце стоит в зените, и вертикально стоящие предметы не дают теней. В то же самое время в Александрии предметы дают тень. Пользуясь высоким вертикально поставленным столбом и его тенью, Эратосфен вычислил, что в Александрии 22 июня в полдень луч солнца и вертикаль образуют угол. Нетрудно видеть, что угол этот равен центральному углу АОС. Зная длину дуги отмеченного нами угла (она является расстоянием между Сиеной и Александрией), Эратосфен вычислил длину окружности земного шара. Расстояние между Сиеной и Александрией 5 тыс. египетских стадий, стало быть длина окружности Земли тыс. стадии.

После очень долгого перерыва первое измерение градуса с целью определить размеры земного шара было сделано французским ученым Френелем в 1528 г. Взяв расстояние от Амьена до Парижа (измерив его числом оборотов колеса экипажа) и определив астрономически разницу широт, он получил размеры Земли, довольно близкие к современным.

Земля как эллипсоид. (рисунок 2) До половины XVII в. Землю считали правильным шаром, но потом были замечены факты, которые заставили усомниться в правильности подобного представления.


Рисунок 2


Так, астрономические часы, перевезенные в 1672 г. из Парижа в Кайену (Гвиана), стали ежедневно отставать. Чтобы добиться правильного показания времени, пришлось укоротить маятник часов. Дальнейшие наблюдения, произведенные в других местах, показали, что скорость качания маятника по мере движения от полюсов к экватору уменьшается. Первоначально это явление пытались, объяснить центробежной силой вращения Земли. Однако более точные расчеты показали, что для подобных изменений потребовалось бы увеличить скорость вращения Земли в 17 раз. Оставалась единственная возможность допустить, что уменьшение силы тяжести от полюсов к экватору зависит от полярного сжатия Земли.

Заключение о полярном сжатии Земли встретило ряд возражений. Разгоревшийся около этих вопросов спор заставил Французскую академию снарядить две экспедиции для измерения длины градуса в полярных и экваториальных широтах. Обе экспедиции, работая совершенно независимо (одна в Перу в 1735 г. и другая в Лапландии в 1736 г.), дали следующие результаты: длина градуса в Лапландии равна 57 437 туазам, длина градуса в Перу равна 56 753 туазам. Следовательно, экваториальный градус оказался короче полярного на 648 туаза. Отсюда можно было сделать совершенно определенный вывод о полярном сжатии Земли, Позже эти выводы были подтверждены и другими еще более точными измерениями. Полярный радиус Земли оказался на 21,4 км короче экваториального.

Земля как геоид. Продолжавшиеся в XIX в. градусные измерения и измерения силы тяжести в различных пунктах показали, что форма Земли сложнее, чем это предполагалось. Например, напряжение силы тяжести на многих океанических островах оказалось значительно больше, чем на материках. Исходя из этих фактов, пришлось допустить, что уровень воды в океанах неодинаков, форма Земли во многих случаях отступает от формы эллипсоида вращения. Дальнейшие измерения показали, что Земля по своей форме хотя и приближается к эллипсоиду вращения, но имеет более сложную, присущую только ей форму, которая получила название геоида3. Эта индивидуальная форма Земли пока еще недостаточно изучена. Известно, что поверхности теоретически вычисленных эллипсоида и геоида не совпадают, однако несовпадение это не превышает 100 м. Практически для геодезии и картографии подобное отступление от формы эллипсоида роли не играет, а потому геодезисты при всех своих расчетах исходят из того, что Земля имеет форму эллипсоида вращения.

Размеры Земли. В Советском Союзе в настоящее время приняты размеры земного шара, вычисленные советскими учеными Ф. Н. Красовским и А. А. Изотовым. Они характеризуются следующими данными.

Сжатие Земли

Поверхность Земли S = 510 млн. км2.

Водная поверхность Земли Sb = 71 % всей поверхности Земли.

Поверхность суши Sc = 29% всей поверхности Земли.

Объем Земли V = 1083 млрд. км3.

Масса Земли m = 6Х1021 т, из которых около 7% приходится на воду.

Длина дуги в 1° на разных географических широтах различна:

Для вычисления размеров земного эллипсоида Ф. Н. Красовский привлек большие материалы по градусным измерениям не только Советского Союза, но также Западной Европы и США. Кроме того, впервые для вычислений размеров Земли были использованы результаты измерений силы тяжести. Выведенные таким путем размеры эллипсоида более отвечают фигуре Земли в ее континентальной части, чем все ранее полученные. Поэтому 7 апреля 1946 г. Совет Министров СССР принял постановление, согласно которому все геодезические работы должны вестись на основе эллипсоида Ф. Н. Красовского.

Географическое значение формы и размеров Земли. Шарообразная форма Земли обусловливает неравномерное распределение тепла на земной поверхности. Солнечные лучи падают на выпуклую поверхность шара под разными углами. В экваториальной зоне они падают отвесно или почти отвесно, а при удалении от экватора угол падения солнечных лучей на земную поверхность уменьшается. В связи с этим нагревание Земли в один и тот же момент от экватора к полюсам уменьшается, что приводит к изменению климатов, к изменению условий природы на различных широтах

Вряд ли нужно много писать о форме Земли. Всем ясно, что Земля представляет собой шар, слегка сплюснутый у полюсов, т. е. так называемый эллипсоид. Однако правильное, современное представление о форме и размерах Земли было достигнуто далеко не сразу и достигалось порою в тяжелой борьбе науки с религией.

Греческий поэт Гомер (IX-VIII в. до н. э.) изображал Землю в виде круга, схваченного со всех сторон рекой Океаном, «которая катит свои могучие воды по ободу богатого щита»; такое изображение Земли было выгравировано, якобы, на щите мифического героя Ахиллеса. Философ Фалес (VI в. до н. э.) полагал, что Земля - шар, а его ученик Анаксимандр изображал Землю в виде цилиндра. Другие философы и ученые Древней Греции представляли Землю то в виде куба, то в виде лодки и т. д.; ученики Ксенофонта и Анаксимена считали, что Земля - очень высокая гора. Греческая мифология содержит легенду о том, как Зевс, желая определить размеры Земли, выпустил одновременно двух орлов, одного на запад, другого на восток: они встретились в городе Дельфах; это называлось «обнаружение Земли путем слета двух орлов».

На протяжении ряда веков, через дебри схоластики и религии средневековья, пробивала себе путь истина.

Еще совсем недавно, в 1862 г., немецкий ученый П. Иоселиани, определяя «глубину толстоты земного шара», получил 4536,8 км, что в 11/2 раза меньше действительной величины. Трудно поверить, но еще в 1876 г. в Петербурге была издана брошюра под названием: «Земля неподвижна, популярная лекция, доказывающая, что земной шар не вращается ни около оси, ни около Солнца. Читана в Берлине, доктором Шепфером. Перевод с немецкого Н. Соловьева. Издание 2-е, исправленное». Мы не будем останавливаться на подобных заблуждениях, и не будем касаться истории вопроса. Рассмотрим сведения, более существенные для нас в данном случае.

В 1841 г. немецкий астроном Ф. Бессель, используя градусные измерения, вычислил радиус Земли и ее сжатие у полюсов, т. е. получил цифры, характеризующие основные элементы земного эллипсоида. Результат был настолько точным, что эти цифры использовались при различных геодезических исследованиях, в картографии и т. п. в течение 100 лет.


3. Методы изучения фигуры Земли


3.1 Гравиметрический метод


Гравиметрия - раздел науки об измерении величин, характеризующих гравитационное поле Земли <#"59" src="doc_zip6.jpg" />


где G - Гравитационная постоянная, mu - единичная масса, dm - элемент массы, R - радиус-векторы точки измерения, r - радиус-вектор элемента массы, w - угловая скорость вращения Земли; интеграл берется по всем массам.

Потенциал силы тяжести, соответственно, определяется соотношением:

где - широта точки измерения.

Гравиметрия включает теорию нивелирных высот, обработку астрономо-геодезических сетей в связи с вариациями гравитационного поля Земли.

Единицей измерения в гравиметрии является Гал (1 см/с2) названная в честь итальянского учёного Галилео Галилея.

Определения силы тяжести производятся относительным методом, путем измерения при помощи гравиметров и маятниковых приборов разности силы тяжести в изучаемых и опорных пунктах. Сеть же опорных гравиметрических пунктов на всей Земле связана в конечном итоге с пунктом в Потсдаме (Германия), где оборотными маятниками в начале 20 века было определено абсолютное значение ускорения силы тяжести (981 274 мгл; см. Гал). Абсолютные определения силы тяжести сопряжены со значительными трудностями, и их точность ниже относительных измерений. Новые абсолютные измерения, производимые более чем в 10 пунктах Земли, показывают, что приведенное значение ускорения силы тяжести в Потсдаме превышено, по-видимому, на 13-14 мгл. После завершения этих работ будет осуществлен переход на новую гравиметрическую систему. Однако во многих задачах гравиметрии эта ошибка не имеет существенного значения, т.к. для их решения используются не сами абсолютные величины, а их разности. Наиболее точно абсолютное значение силы тяжести определяется из опытов со свободным падением тел в вакуумной камере. Относительные определения силы тяжести производятся маятниковыми приборами с точностью до нескольких сотых долей мгл. Гравиметры обеспечивают несколько большую точность измерений, чем маятниковые приборы, портативны и просты в обращении. Существует специальная гравиметрическая аппаратура для измерений силы тяжести с движущихся объектов (подводных и надводных кораблей, самолётов). В приборах осуществляется непрерывная запись изменения ускорения силы тяжести по пути корабля или самолёта. Такие измерения связаны с трудностью исключения из показаний приборов влияния возмущающих ускорений и наклонов основания прибора, вызываемых качкой. Имеются специальные гравиметры для измерений на дне мелководных бассейнов, в буровых скважинах. Вторые производные потенциала силы тяжести измеряются с помощью гравитационных вариометров.

Основной круг задач гравиметрии решается путем изучения стационарного пространственного гравитационного поля. Для изучения упругих свойств Земли производится непрерывная регистрация вариаций силы тяжести во времени. Вследствие того, что Земля неоднородна по плотности и имеет неправильную форму, ее внешнее гравитационное поле характеризуется сложным строением. Для решения различных задач удобно рассматривать гравитационное поле состоящим из двух частей: основного - называемого нормальным, изменяющегося с широтой места по простому закону, и аномального - небольшого по величине, но сложного по распределению, обусловленного неоднородностями плотности пород в верхних слоях Земли. Нормальное гравитационное поле соответствует некоторой идеализированной простой по форме и внутреннему строению модели Земли (эллипсоиду или близкому к нему сфероиду). Разность между наблюдённой силой тяжести и нормальной, вычисленной по той или иной формуле распределения нормальной силы тяжести и приведённой соответствующими поправками к принятому уровню высот, называется аномалией силы тяжести. Если при таком приведении принимается во внимание только нормальный вертикальный градиент силы тяжести, равный 3086 этвеш (т. е. в предположении, что между пунктом наблюдения и уровнем приведения нет никаких масс), то полученные таким путём аномалии называются аномалиями в свободном воздухе. Вычисленные так аномалии чаще всего применяются при изучении фигуры Земли. Если при приведении учитывается ещё и притяжение считающегося однородным слоя масс между уровнями наблюдения и приведения, то получаются аномалии, называемые аномалиями Буге. Они отражают неоднородности в плотности верхних частей Земли и используются при решении геологоразведочных задач. В гравиметрии рассматриваются также изостатические аномалии, которые специальным образом учитывают влияние масс между земной поверхностью и уровнем поверхности на глубине, на которую вышележащие массы оказывают одинаковое давление. Кроме этих аномалий вычисляется ряд других (Прея, модифицированные Буге и пр.). На основании гравиметрических измерений строятся гравиметрические карты с изолиниями аномалий силы тяжести. Аномалии вторых производных потенциала силы тяжести определяются аналогично как разности наблюденного значения (предварительно исправленного за рельеф местности) и нормального значения. Такие аномалии в основном используются для разведки полезных ископаемых.

В задачах, связанных с использованием гравиметрических измерений для изучения фигуры Земли, обычно ведутся поиски эллипсоида, наилучшим образом представляющего геометрическую форму и внешнее гравитационное поле Земли.


3.2 Определение общего земного сфероида


Обозначим большую полуось сфероида (экваториальный радиус) через a, малую (полярный радиус) - через b; отношение (a-b)/a называется сжатием земного сфероида ?. На величину a влияет не только скорость вращения планеты на своей оси, но и характер (степень однородности) внутреннего строения планеты. Наиболее правильно и точно представляет общую фигуру Земли в целом эллипсоид, вычисленный Ф. Н. Красовским и его сотрудниками на основании новых данных, полученных при обработке градусных измерений СССР, Западной Европы и США. Следовательно, экваториальный диаметр Земли равен 12756,5 км, длина земной оси 12713,7 км, а полярный радиус короче экваториального всего на 21,4 км, в связи с чем среднее полярное сжатие настолько ничтожно, что земной сфероид практически почти не отличается от правильного шара. Величина сжатия у таких планет, как Юпитер, Сатурн и Уран, много больше: она равна соответственно 1: 15,4; 1: 9,5 и 1: 14. Их большее сжатие объясняется наличием атмосфер огромной протяжённости и тем, что они вращаются на своих осях почти в два с половиной раза быстрее, чем Земля. Средним радиусом Земли принято считать радиус шара, одинакового по объёму с земным сфероидом, а именно 6371,110 км. Вычислено, что поверхность земного сфероида составляет округлённо 510 млн. кв. км, а объём 1,083 X 1012 куб. км. Длина окружности меридиана 40008,548 км. Работы по вычислению нового эллипсоида показали, что Земля есть, в сущности, трехосный эллипсоид. Это означает наличие у неё не только полярного, но и экваториального сжатия, которое, впрочем, равно всего 1:30 000. Следовательно, земной экватор - не окружность, а эллипс; наибольший и наименьший радиусы экватора отличаются на 213 м. Однако принятие трехосного эллипсоида в геодезических работах сильно усложнило бы эти работы и не принесло бы особых практических выгод. Поэтому фигуру Земли в геодезии и картографии рассматривают как двухосный эллипсоид.


3.3 Космический метод


Космическая геодезия - наука, изучающая использование результатов наблюдений искусственных и естественных спутников Земли для решения научных и научно-технических задач геодезии. Наблюдения выполняют как с поверхности планеты, так и непосредственно на спутниках. Космическая геодезия получила широкое развитие с момента запуска первого искусственного спутника Земли.

Одной из задач космической геодезии является изучение фигуры Земли, Луны и планет с использованием спутниковых измерений.

С момента запуска искусственного спутника Земли 1958 год, перед геодезией были поставлены новые задачи, это наблюдения за искусственными спутниками Земли но орбите и определение пространственных координат точек Земной поверхности, создание опорной геодезической сети.

Влияние отклонений реальных орбит искусственных спутников Земли от вычисленных по формулам Кеплера, позволяет уточнить представление о гравитационном поле Земли и в конечном результате о ее форме.

В заключении приведем некоторые соображения, связанные с перспективами развития космической геодезии. Дело в том, что в настоящее время исследователи довольно ясно представляют себе, как применять существующие космические средства и методы для решения основных задач геодезии и геодинамики. По прежнему остается основной задачей геодезии определение размеров, фигуры и гравитационного поля Земли. Будет продолжена работа по уточнению и развитию больших региональных и глобальных триангуляционных сетей. В этой работе существенную роль играет установление единой общеземной системы координат для высокоточных измерений, а на первом этапе - определение взаимного положения начал и ориентировки осей различных систем геодезических координат.

Бытующее до сих пор мнение, что началом общеземной системы координат должен быть центр масс Земли, может измениться. Проблема определения положения центра масс в теле Земли оказалась гораздо сложнее, чем предполагали ранее: в точной постановке речь должна идти о центре масс системы Земля - Луна. Создание новой аппаратуры позволит с большей точностью изучать такие тонкие геодинамические эффекты, относящиеся именно к системе Земля - Луна, как движение полюсов Земли, вариации скорости вращения Земли, земные приливы.

Продолжится изучение смещений континентальных плит, несомненно будет осуществлен один из проектов глобальной службы слежения за движением материков. Продолжатся тончайшие, на пределе точности (несколько микроГал), исследования вариаций силы тяжести.

Но развитие космических методов в ближайшем будущем не ограничится их использованием в пределах Земли.

И хотя приставка «гео» остается в названиях научных дисциплин, о которых мы говорим, методы эти давно стали общими для исследования Солнечной системы в целом.

Давно уже ведется изучение гравитационного поля и фигуры Луны. Существуют даже попытки ввести в научный обиход термин «селенодезия» (Селена - древнегреческое название Луны). Есть смысл говорить об определении гравитационных полей планет.

А если серьезнее заглядывать в будущее космических методов, то можно представить себе такую задачу. Нельзя ли создать в рамках Солнечной системы единый подход к системам координат, который помогал бы увязывать их в единую иерархическую структуру?

Дело в том, что при полете КА к далеким планетам он как бы переходит из системы геоцентрической в гелиоцентрическую, потом, например (если пролетает около Марса), в ареацентрическую, а у нее должна быть связь с системами координат спутников Марса и т. д.

И если представить себе разницу в размерах (масштабах) этих систем координат, то неясным становится, как выдерживать единые требования к относительной точности определяемых координат.

Для самого КА эта проблема в основном «снимается» возможностями корректировки его движения, а для планет и их естественных спутников имеет существенное значение. И поскольку освоение Солнечной системы началось и продолжается, задача установления единой для Солнечной системы структуры систем координат будет, несомненно, решаться. }