Оценка достоверности коэффициента корреляции. Критерий корреляции пирсона

Как неоднократно отмечалось, для статистического вывода о наличии или отсутствии корреляционной связи между исследуемыми переменными необходимо произвести проверку значимости выборочного коэффициента корреляции. В связи с тем что надежность статистических характеристик, в том числе и коэффициента корреляции, зависит от объема выборки, может сложиться такая ситуация, когда величина коэффициента корреляции будет целиком обусловлена случайными колебаниями в выборке, на основании которой он вычислен. При существенной связи между переменными коэффициент корреляции должен значимо отличаться от нуля. Если корреляционная связь между исследуемыми переменными отсутствует, то коэффициент корреляции генеральной совокупности равен нулю. При практических исследованиях, как правило, основываются на выборочных наблюдениях. Как всякая статистическая характеристика, выборочный коэффициент корреляции является случайной величиной, т. е. его значения случайно рассеиваются вокруг одноименного параметра генеральной совокупности (истинного значения коэффициента корреляции). При отсутствии корреляционной связи между переменными у их коэффициент корреляции в генеральной совокупности равен нулю. Но из-за случайного характера рассеяния принципиально возможны ситуации, когда некоторые коэффициенты корреляции, вычисленные по выборкам из этой совокупности, будут отличны от нуля.

Могут ли обнаруженные различия быть приписаны случайным колебаниям в выборке или они отражают существенное изменение условий формирования отношений между переменными? Если значения выборочного коэффициента корреляции попадают в зону рассеяния,

обусловленную случайным характером самого показателя, то это не является доказательством отсутствия связи. Самое большее, что при этом можно утверждать, сводится к тому, что данные наблюдений не отрицают отсутствия связи между переменными. Но если значение выборочного коэффициента корреляции будет лежать вне упомянутой зоны рассеяния, то делают вывод, что он значимо отличается от нуля, и можно считать, что между переменными у их существует статистически значимая связь. Используемый для решения этой задачи критерий, основанный на распределении различных статистик, называется критерием значимости.

Процедура проверки значимости начинается с формулировки нулевой гипотезы В общем виде она заключается в том, что между параметром выборки и параметром генеральной совокупности нет каких-либо существенных различий. Альтернативная гипотеза состоит в том, что между этими параметрами имеются существенные различия. Например, при проверке наличия корреляции в генеральной совокупности нулевая гипотеза заключается в том, что истинный коэффициент корреляции равен нулю Если в результате проверки окажется, что нулевая гипотеза не приемлема, то выборочный коэффициент корреляции значимо отличается от нуля (нулевая гипотеза отвергается и принимается альтернативная Другими словами, предположение о некоррелированности случайных переменных в генеральной совокупности следует признать необоснованным. И наоборот, если на основе критерия значимости нулевая гипотеза принимается, т. е. лежит в допустимой зоне случайного рассеяния, то нет оснований считать сомнительным предположение о некоррелированности переменных в генеральной совокупности.

При проверке значимости исследователь устанавливает уровень значимости а, который дает определенную практическую уверенность в том, что ошибочные заключения будут сделаны только в очень редких случаях. Уровень значимости выражает вероятность того, что нулевая гипотеза отвергается в то время, когда она в действительности верна. Ясно, что имеет смысл выбирать эту вероятность как можно меньшей.

Пусть известно распределение выборочной характеристики, являющейся несмещенной оценкой параметра генеральной совокупности. Выбранному уровню значимости а соответствуют под кривой этого распределения заштрихованные площади (см. рис. 24). Незаштрихованная площадь под кривой распределения определяет вероятность Границы отрезков на оси абсцисс под заштрихованными площадями называют критическими значениями, а сами отрезки образуют критическую область, или область отклонения гипотезы.

При процедуре проверки гипотезы выборочную характеристику, вычисленную по результатам наблюдений, сравнивают с соответствующим критическим значением. При этом следует различать одностороннюю и двустороннюю критические области. Форма задания критической области зависит от постановки задачи при статистическом исследовании. Двусторонняя критическая область необходима в том случае, когда при сравнении параметра выборки и параметра генеральной совокупности

требуется оценить абсолютную величину расхождения между ними, т. е. представляют интерес как положительные, так и отрицательные разности между изучаемыми величинами. Когда же надо убедиться в том, что одна величина в среднем строго больше или меньше другой, используется односторонняя критическая область (право- или левосторонняя). Вполне очевидно, что для одного и того же критического значения уровень значимости при использовании односторонней критической области меньше, чем при использовании двусторонней.

Рис. 24. Проверка нулевой гипотезы

Если распределение выборочной характеристики симметрично, то уровень значимости двусторонней критической области равен а, а односторонней - у (см. рис. 24). Ограничимся лишь общей постановкой проблемы. Более подробно с теоретическим обоснованием проверки статистических гипотез можно познакомиться в специальной литературе. Далее мы лишь укажем критерии значимости для различных процедур, не останавливаясь на их построении.

Проверяя значимость коэффициента парной корреляции, устанавливают наличие или отсутствие корреляционной связи между исследуемыми явлениями. При отсутствии связи коэффициент корреляции генеральной совокупности равен нулю Процедура проверки начинается с формулировки нулевой и альтернативной гипотез:

Различие между выборочным коэффициентом корреляции незначимо,

Различие между значимо, и следовательно, между переменными у их имеется существенная связь. Из альтернативной гипотезы следует, что нужно воспользоваться двусторонней критической областью.

В разделе 8.1 уже упоминалось, что выборочный коэффициент корреляции при определенных предпосылках связан со случайной величиной подчиняющейся распределению Стьюдента с степенями свободы. Вычисленная по результатам выборки статистика

сравнивается с критическим значением, определяемым по таблице распределения Стьюдента при заданном уровне значимости а и степенях свободы. Правило применения критерия заключается в следующем: если то нулевая гипотеза на уровне значимости а отвергается, т. е. связь между переменными значима; если то нулевая гипотеза на уровне значимости а принимается. Отклонение значения от можно приписать случайной вариации. Данные выборки характеризуют рассматриваемую гипотезу как весьма возможную и правдоподобную, т. е. гипотеза об отсутствии связи не вызывает возражений.

Процедура проверки гипотезы значительно упрощается, если вместо статистики воспользоваться критическими значениями коэффициента корреляции, которые могут быть определены через квантили распределения Стьюдента путем подстановки в

Существуют подробные таблицы критических значений, выдержка из которых приведена в приложении к данной книге (см. табл. 6). Правило проверки гипотезы в этом случае сводится к следующему: если то можем утверждать, что связь между переменными существенная. Если то результаты наблюдений считаем непротиворечащими гипотезе об отсутствии связи.

Проверим гипотезу о независимости производительности труда от уровня механизации работ при по данным, приведенным в разделе 4.1. Ранее было вычислено, что По (8.38) получаем

По таблице распределения Стьюдента для находим критическое значение этой статистики: Поскольку нулевую гипотезу отвергаем, допуская ошибку лишь в 5% случаев.

Мы получим тот же результат, если будем сравнивать с критическим значением коэффициента корреляции найденным по соответствующей таблице при

которая имеет -распределение с степенями свободы. Далее процедура проверки значимости проводится аналогично предыдущей с помощью -критерия.

Пример

Исходя из экономического анализа явлений предполагаем в генеральной совокупности сильную связь между производительностью труда и уровнем механизации работ. Пусть, например, . В качестве альтернативной в этом случае можем выдвинуть гипотезу так как выборочный коэффициент корреляции Таким образом, мы должны воспользоваться односторонней критической областью. Из (8.40) следует, что

Полученное значение сравниваем с критическим значением Имеем Таким образом, на уровне значимости 5% можно предполагать наличие очень тесной связи между изучаемыми признаками, т. е. исходные данные позволяют считать правдоподобным, что

Значимость коэффициентов частной корреляции проверяется аналогичным путем. Изменяется только число степеней свободы, которое становится равным где - количество объясняющих переменных. Значение статистики, вычисленное по формуле

сравнивается с критическим значением а, найденным по таблице -распределения при уровне значимости а и числе степеней свободы Принятие или отклонение гипотезы о значимости коэффициента частной корреляции производится по тому же правилу, что было описано выше. Проверку значимости можно осуществить также с помощью критических значений коэффициента корреляции по (8.39), а также используя -преобразование Фишера (8.40).

Пример

Проверим статистическую надежность коэффициентов частной корреляции, вычисленных в разделе 4.5, на уровне значимости Ниже, наряду с коэффициентами частной корреляции, приведены соответствующие им расчетные и критические значения статистики

В связи с тем что при принимается гипотеза о значимости коэффициентов делаем вывод: уровень механизации работ оказывает существенное влияние на производительность труда при исключении влияния среднего возраста работников (и среднего процента выполнения норм). Отличие от нуля остальных коэффициентов

частной корреляции может быть отнесёноза счет случайных колебаний в выборке, и поэтому по ним мы не можем сказать ничего определенного о частных влияниях соответствующих переменных.

О значимости коэффициента множественной корреляции судят по результату осуществления процедуры проверки значимости коэффициента множественной детерминации. Более подробно мы обсудим это в следующем разделе.

Часто представляет интерес вопрос: значимо ли отличаются друг от друга два коэффициента корреляции? При проверке этой гипотезы предполагается, что рассматриваются одни и те же признаки однородных совокупностей; данные представляют собой результаты независимых испытаний; применяются коэффициенты корреляции одного типа, т. е. либо коэффициенты парной корреляции, либо коэффициенты частной корреляции при исключении одинакового количества переменных.

Объемы двух выборок, по которым вычисляются коэффициенты корреляции, могут быть различны. Нулевая гипотеза: т. е. коэффициенты корреляции двух рассматриваемых совокупностей равны. Альтернативная гипотеза: Из альтернативной гипотезы следует, что должна быть использована двусторонняя критическая область. Другими словами, следует проверить, значимо ли отличается от нуля разность Воспользуемся статистикой, имеющей приближенно нормальное распределение:

где - результаты -преобразований коэффициентов корреляции - объемы выборок. Правило проверки: если то гипотеза отвергается; если то гипотеза принимается.

В случае принятия величина

после обратного пересчета в с помощью (8.6) служит сводной оценкой коэффициента корреляции Далее может быть проверена гипотеза с помощью статистики

имеющей нормальное распределение.

Пример

Пусть требуется установить при различна ли теснота связи между производительностью труда и уровнем механизации работ на предприятиях одной отрасли промышленности, расположенных в различных районах страны. Сравним предприятия, находящиеся в двух районах. Пусть для одного из них коэффициент корреляции вычислен по выборке объема (см. раздел 4.1). Для Другого района вычислен по выборке объема

После перевода обоих коэффициентов корреляций в -величины вычислим по (8.42) значение статистики X:

Критическое значение статистики при составляет Таким образом, гипотеза принимается, т. е. на основе имеющихся выборок мы не можем установить значимого различия между коэффициентами корреляции. При этом оба коэффициента корреляции значимы.

Используя (8.43) и (8.6), получим сводную оценку коэффициента корреляции для двух районов:

Наконец, проверим гипотезу, значимо ли отличается от нуля сводная оценка коэффициента корреляции с помощью статистики (8.44):

Так как при можем утверждать, что в генеральной совокупности имеется существенная связь между производительностью труда и уровнем механизации работ.

Критерий X может быть использован в различных аспектах. Так, вместо районов могут рассматриваться различные отрасли промышленности, например когда требуется определить, значимы ли различия по силе исследуемых связей между экономическими показателями предприятий, принадлежащих двум различным отраслям.

Пусть на основе двух выборок объема вычислены коэффициенты корреляции характеризующие тесноту связи между производительностью труда и уровнем механизации работ на предприятиях, принадлежащих двум отраслям промышленности (двум генеральным совокупностям). По (8.42) получим

Так как при нулевую гипотезу отвергаем. Следовательно, можно утверждать, что имеются значимые различия в тесноте связи между производительностью труда и уровнем механизации работ на предприятиях, относящихся к различным отраслям промышленности. Этот пример продолжим в разделе 8.7, где будет произведено сравнение регрессионных прямых, построенных для двух совокупностей.

Анализируя приведенные примеры, убеждаемся, что рассмотрение только абсолютной разницы сравниваемых коэффициентов корреляции

(объемы выборок в обоих случаях одинаковы) без проверки значимости этой разницы приведет к ошибочным заключениям. Это подтверждает необходимость пользоваться статистическими критериями при сравнении коэффициентов корреляции.

Процедуру сравнения двух коэффициентов корреляции можно обобщить на большее число коэффициентов при соблюдении указанных выше предпосылок. Гипотеза равенства коэффициентов корреляции между переменными у их выражается следующим образом: Она проверяется на основе коэффициентов корреляции вычисленных по выборкам объема из генеральных совокупностей. производится пересчет коэффициентов корреляций в -величины: Так как в общем случае неизвестен, находим его оценку через по формуле, являющейся обобщением (8.43).

КУРСОВАЯ РАБОТА

Тема: Корреляционный анализ

Введение

1. Корреляционный анализ

1.1 Понятие корреляционной связи

1.2 Общая классификация корреляционных связей

1.3 Корреляционные поля и цель их построения

1.4 Этапы корреляционного анализа

1.5 Коэффициенты корреляции

1.6 Нормированный коэффициент корреляции Браве-Пирсона

1.7 Коэффициент ранговой корреляции Спирмена

1.8 Основные свойства коэффициентов корреляции

1.9 Проверка значимости коэффициентов корреляции

1.10 Критические значения коэффициента парной корреляции

2. Планирование многофакторного эксперимента

2.1 Условие задачи

2.2 Определение центр плана (основной уровень) и уровня варьирования факторов

2.3 Построение матрицы планирования

2.4 Проверка однородности дисперсии и равноточности измерения в разных сериях

2.5 Коэффициенты уравнения регрессии

2.6 Дисперсия воспроизводимости

2.7 Проверка значимости коэффициентов уравнения регрессии

2.8 Проверка адекватности уравнения регрессии

Заключение

Список литературы

ВВЕДЕНИЕ

Планирование эксперимента -математико-статистическая дисциплина, изучающая методы рациональной организации экспериментальных исследований - от оптимального выбора исследуемых факторов и определения собственно плана эксперимента в соответствии с его целью до методов анализа результатов. Начало планирования эксперимента положили труды английского статистика Р.Фишера (1935), подчеркнувшего, что рациональное планирование экспериментадаёт не менее существенный выигрыш в точности оценок, чем оптимальная обработка результатов измерений. В 60-х годах 20 века сложилась современная теория планирования эксперимента. Её методы тесно связаны с теорией приближения функций и математическим программированием. Построены оптимальные планы и исследованы их свойства для широкого класса моделей.

Планирование эксперимента – выбор плана эксперимента, удовлетворяющего заданным требованиям, совокупность действий направленных на разработку стратегии экспериментирования (от получения априорной информации до получения работоспособной математической модели или определения оптимальных условий). Это целенаправленное управление экспериментом, реализуемое в условиях неполного знания механизма изучаемого явления.

В процессе измерений, последующей обработки данных, а также формализации результатов в виде математической модели, возникают погрешности и теряется часть информации, содержащейся в исходных данных. Применение методов планирования эксперимента позволяет определить погрешность математической модели и судить о ее адекватности. Если точность модели оказывается недостаточной, то применение методов планирования эксперимента позволяет модернизировать математическую модель с проведением дополнительных опытов без потери предыдущей информации и с минимальными затратами.

Цель планирования эксперимента – нахождение таких условий и правил проведения опытов при которых удается получить надежную и достоверную информацию об объекте с наименьшей затратой труда, а также представить эту информацию в компактной и удобной форме с количественной оценкой точности.

Среди основных методов планирования, применяемых на разных этапах исследования, используют:

Планирование отсеивающего эксперимента, основное значение которого выделение из всей совокупности факторов группы существенных факторов, подлежащих дальнейшему детальному изучению;

Планирование эксперимента для дисперсионного анализа, т.е. составление планов для объектов с качественными факторами;

Планирование регрессионного эксперимента, позволяющего получать регрессионные модели (полиномиальные и иные);

Планирование экстремального эксперимента, в котором главная задача – экспериментальная оптимизация объекта исследования;

Планирование при изучении динамических процессов и т.д.

Целью изучения дисциплины является подготовка студентов к производственно-технической деятельности по специальности с применением методов теории планирования и современных информационных технологий.

Задачи дисциплины: изучение современных методов планирования, организации и оптимизации научного и промышленного эксперимента, проведения экспериментов и обработки полученных результатов.

1. КОРРЕЛЯЦИОННЫЙ АНАЛИЗ

1.1 Понятие корреляционной связи

Исследователя нередко интересует, как связаны между собой две или большее количество переменных в одной или нескольких изучаемых выборках. Например, может ли рост влиять на вес человека или может ли давление влиять на качество продукции?

Такого рода зависимость между переменными величинами называется корреляционной, или корреляцией. Корреляционная связь - это согласованное изменение двух признаков, отражающее тот факт, что изменчивость одного признака находится в соответствии с изменчивостью другого.

Известно, например, что в среднем между ростом людей и их весом наблюдается положительная связь, и такая, что чем больше рост, тем больше вес человека. Однако из этого правила имеются исключения, когда относительно низкие люди имеют избыточный вес, и, наоборот, астеники, при высоком росте имеют малый вес. Причиной подобных исключений является то, что каждый биологический, физиологический или психологический признак определяется воздействием многих факторов: средовых, генетических, социальных, экологических и т.д.

Корреляционные связи - это вероятностные изменения, которые можно изучать только на представительных выборках методами математической статистики. Оба термина - корреляционная связь и корреляционная зависимость - часто используются как синонимы. Зависимость подразумевает влияние, связь - любые согласованные изменения, которые могут объясняться сотнями причин. Корреляционные связи не могут рассматриваться как свидетельство причинно-следственной зависимости, они свидетельствуют лишь о том, что изменениям одного признака, как правило, сопутствуют определенные изменения другого.

Корреляционная зависимость - это изменения, которые вносят значения одного признака в вероятность появления разных значений другого признака.

Задача корреляционного анализа сводится к установлению направления (положительное или отрицательное) и формы (линейная, нелинейная) связи между варьирующими признаками, измерению ее тесноты, и, наконец, к проверке уровня значимости полученных коэффициентов корреляции.

Корреляционные связи различаютсяпо форме, направлению и степени (силе).

По форме корреляционная связь может быть прямолинейной или криволинейной. Прямолинейной может быть, например, связь между количеством тренировок на тренажере и количеством правильно решаемых задач в контрольной сессии. Криволинейной может быть, например, связь между уровнем мотивации и эффективностью выполнения задачи (рисунок 1). При повышении мотивации эффективность выполнения задачи сначала возрастает, затем достигается оптимальный уровень мотивации, которому соответствует максимальная эффективность выполнения задачи; дальнейшему повышению мотивации сопутствует уже снижение эффективности.

Рисунок 1 - Связь между эффективностью решения задачи и силой мотивационной тенденции

По направлению корреляционная связь может быть положительной ("прямой") и отрицательной ("обратной"). При положительной прямолинейной корреляции более высоким значениям одного признака соответствуют более высокие значения другого, а более низким значениям одного признака - низкие значения другого (рисунок 2). При отрицательной корреляции соотношения обратные (рисунок 3). При положительной корреляции коэффициент корреляции имеет положительный знак, при отрицательной корреляции - отрицательный знак.

Рисунок 2 – Прямая корреляция

Рисунок 3 – Обратная корреляция


Рисунок 4 – Отсутствие корреляции

Степень, сила или теснота корреляционной связи определяется по величине коэффициента корреляции. Сила связи не зависит от ее направленности и определяется по абсолютному значению коэффициента корреляции.

1.2 Общая классификация корреляционных связей

В зависимости от коэффициента корреляции различают следующие корреляционные связи:

Сильная, или тесная при коэффициенте корреляции r>0,70;

Средняя (при 0,50

Умеренная (при 0,30

Слабая (при 0,20

Очень слабая (при r<0,19).

1.3 Корреляционные поля и цель их построения

Корреляция изучается на основании экспериментальных данных, представляющих собой измеренные значения (x i , y i) двух признаков. Если экспериментальных данных немного, то двумерное эмпирическое распределение представляется в виде двойного ряда значений x i и y i . При этом корреляционную зависимость между признаками можно описывать разными способами. Соответствие между аргументом и функцией может быть задано таблицей, формулой, графиком и т. д.

Корреляционный анализ, как и другие статистические методы, основан на использовании вероятностных моделей, описывающих поведение исследуемых признаков в некоторой генеральной совокупности, из которой получены экспериментальные значения x i и y i . Когда исследуется корреляция между количественными признаками, значения которых можно точно измерить в единицах метрических шкал (метры, секунды, килограммы и т.д.), то очень часто принимается модель двумерной нормально распределенной генеральной совокупности. Такая модель отображает зависимость между переменными величинами x i и y i графически в виде геометрического места точек в системе прямоугольных координат. Эту графическую зависимость называются также диаграммой рассеивания или корреляционным полем.
Данная модель двумерного нормального распределения (корреляционное поле) позволяет дать наглядную графическую интерпретацию коэффициента корреляции, т.к. распределение в совокупности зависит от пяти параметров: μ x , μ y – средние значения (математические ожидания); σ x ,σ y – стандартные отклонения случайных величин Х и Y и р – коэффициент корреляции, который является мерой связи между случайными величинами Х и Y.
Если р = 0, то значения, x i , y i , полученные из двумерной нормальной совокупности, располагаются на графике в координатах х, у в пределах области, ограниченной окружностью (рисунок 5, а). В этом случае между случайными величинами Х и Y отсутствует корреляция и они называются некоррелированными. Для двумерного нормального распределения некоррелированность означает одновременно и независимость случайных величин Х и Y.

Следует отметить, что истинным показателем степени линейной связи переменных является теоретический коэффициент корреляции , который рассчитывается на основании данных всей генеральной совокупности (т.е. всех возможных значений показателей):

где - теоретический показатель ковариции , который вычисляется как математическое ожидание произведений отклонений СВ
иот их математических ожиданий.

Как правило, теоретический коэффициент корреляции мы рассчитать не можем. Однако из того, что выборочный коэффициент не равен нулю
не следует, что теоретический коэффициент также
(т.е. показатели могут быть линейно независимыми). Т.о. по данным случайной выборки нельзя утверждать, что связь между показателями существует.

Выборочный коэффициент корреляции является оценкой теоретического коэффициента, т.к. он рассчитывается лишь для части значений переменных.

Всегда существует ошибка коэффициента корреляции . Эта ошибка - расхождение между коэффициентом корреляции выборки объемом и коэффициентом корреляции для генеральной совокупности определяется формулами:

при
; и
при
.

Проверка значимости коэффициента линейной корреляции означает проверку того, насколько мы можем доверять выборочным данным.

С этой целью проверяется нулевая гипотеза
о том, что значение коэффициента корреляции для генеральной совокупности равно нулю, т.е.в генеральной совокупности отсутствует корреляция . Альтернативной является гипотеза
.

Для проверки этой гипотезы рассчитывается - статистика (-критерий) Стьюдента:

.

Которая имеет распределение Стьюдента с
степенями свободы 1 .

По таблицам распределения Стьюдента определяется критическое значение
.

Если рассчитанное значение критерия
, то нуль-гипотеза отвергается, то есть вычисленный коэффициент корреляции значимо отличается от нуля с вероятностью
.

Если же
, тогда нулевая гипотеза не может быть отвергнута. В этом случае не исключается, что истинное значение коэффициента корреляции равно нулю, т.е. связь показателей можно считать статистически незначимой.

Пример 1 . В таблице приведены данные за 8 лет о совокупном доходе и расходах на конечное потребление.

Изучить и измерить тесноту взаимосвязи между заданными показателями.

Тема 4. Парная линейная регрессия. Метод наименьших квадратов

Коэффициент корреляции указывает на степень тесноты взаимосвязи между двумя признаками, но он не дает ответа на вопрос, как изменение одного признака на одну единицу его размерности влияет на изменение другого признака. Для того чтобы ответить на этот вопрос, пользуются методами регрессионного анализа.

Регрессионный анализ устанавливает форму зависимости между случайной величиной и значениями переменной величины
, причем, значения
считаются точно заданными.

Уравнение регрессии – это формула статистической связи между переменными.

Если эта формула линейна, то речь идет о линейной регрессии. Формула статистической связи двух переменных называется парной регрессией (нескольких переменных – множественной ).

Выбор формулы зависимости называется спецификацией уравнения регрессии. Оценка значений параметров выбранной формулы называется параметризацией .

Как же оценить значения параметров и проверить надёжность сделанных оценок?

Рассмотрим рисунок

    На графике (а) взаимосвязь х и у близка к линейной, прямая линия 1 здесь близка к точкам наблюдений и последние отклоняются от неё лишь в результате сравнительно небольших случайных воздействий.

    На графике (б) реальная взаимосвязь величин х и у описывается нелинейной функцией 2, и какую бы мы ни провели прямую линию (например, 1), отклонения точек от неё будут неслучайными.

    На графике (в) взаимосвязь между переменными х и у отсутствует, и результаты параметризации любой формулы зависимости будут неудачными.

Начальным пунктом эконометрического анализа зависимостей обычно является оценка линейной зависимости переменных. Всегда можно попытаться провести такую прямую линию, которая будет «ближайшей» к точкам наблюдений по их совокупности (например, на рисунке (в) лучшей будет прямая 1, чем прямая 2).

Теоретическое уравнение парной линейной регрессии имеет вид:


,

где
называютсятеоретическими параметрами (теоретическими коэффициентами ) регрессии; -случайным отклонением (случайной ошибкой ).

В общем виде теоретическую модель будем представлять в виде:

.

Для определения значений теоретических коэффициентов регрессии необходимо знать все значения переменных Х и Y , т.е. всю генеральную совокупность, что практически невозможно.

Задача состоит в следующем: по имеющимся данным наблюдений
,
необходимо оценить значения параметров
.

Пусть а оценка параметра
,b оценка параметра .

Тогда оценённое уравнение регрессии имеет вид:
,

где
теоретические значения зависимой переменнойy , - наблюдаемые значения ошибок. Это уравнение называетсяэмпирическим уравнением регрессии . Будем его записывать в виде
.

В основе оценки параметров линейной регрессии лежит Метод Наименьших Квадратов (МНК) – это метод оценивания параметров линейной регрессии, минимизирующий сумму квадратов отклонений наблюдений зависимой переменной от искомой линейной функции.

Функция Q является квадратичной функцией двух параметров a и b . Т.к. она непрерывна, выпукла и ограничена снизу (
), поэтому она достигает минимума. Необходимым условием существования минимума является равенство нулю её частных производных поa и b :


.

Разделив оба уравнения системы на n , получим:


или

Иначе можно записать:

и  средние квадратические отклонения значений тех же признаков.

Т.о. линия регрессии проходит через точку со средними значениями х и у
, акоэффициент регрессии b пропорционален показателю ковариации и коэффициенту линейной корреляции.

Если кроме регрессии Y на X для тех же эмпирических значений найдено уравнение регрессии X на Y (
, где
), то произведение коэффициентов
:

.

Коэффициент регрессии  это величина, показывающая, на сколько единиц размерности изменится величина при изменении величинына одну единицу ее размерности. Аналогично определяется коэффициент.

В научных исследованиях часто возникает необходимость в нахождении связи между результативными и факторными переменными (урожайностью какой-либо культуры и количеством осадков, ростом и весом человека в однородных группах по полу и возрасту, частотой пульса и температурой тела и т.д.).

Вторые представляют собой признаки, способствующие изменению таковых, связанных с ними (первыми).

Понятие о корреляционном анализе

Существует множество Исходя из вышеизложенного, можно сказать, что корреляционный анализ — это метод, применяющийся с целью проверки гипотезы о статистической значимости двух и более переменных, если исследователь их может измерять, но не изменять.

Есть и другие определения рассматриваемого понятия. Корреляционный анализ — это метод обработки заключающийся в изучении коэффициентов корреляции между переменными. При этом сравниваются коэффициенты корреляции между одной парой или множеством пар признаков, для установления между ними статистических взаимосвязей. Корреляционный анализ — это метод по изучению статистической зависимости между случайными величинами с необязательным наличием строгого функционального характера, при которой динамика одной случайной величины приводит к динамике математического ожидания другой.

Понятие о ложности корреляции

При проведении корреляционного анализа необходимо учитывать, что его можно провести по отношению к любой совокупности признаков, зачастую абсурдных по отношению друг к другу. Порой они не имеют никакой причинной связи друг с другом.

В этом случае говорят о ложной корреляции.

Задачи корреляционного анализа

Исходя из приведенных выше определений, можно сформулировать следующие задачи описываемого метода: получить информацию об одной из искомых переменных с помощью другой; определить тесноту связи между исследуемыми переменными.

Корреляционный анализ предполагает определение зависимости между изучаемыми признаками, в связи с чем задачи корреляционного анализа можно дополнить следующими:

  • выявление факторов, оказывающих наибольшее влияние на результативный признак;
  • выявление неизученных ранее причин связей;
  • построение корреляционной модели с ее параметрическим анализом;
  • исследование значимости параметров связи и их интервальная оценка.

Связь корреляционного анализа с регрессионным

Метод корреляционного анализа часто не ограничивается нахождением тесноты связи между исследуемыми величинами. Иногда он дополняется составлением уравнений регрессии, которые получают с помощью одноименного анализа, и представляющих собой описание корреляционной зависимости между результирующим и факторным (факторными) признаком (признаками). Этот метод в совокупности с рассматриваемым анализом составляет метод

Условия использования метода

Результативные факторы зависят от одного до нескольких факторов. Метод корреляционного анализа может применяться в том случае, если имеется большое количество наблюдений о величине результативных и факторных показателей (факторов), при этом исследуемые факторы должны быть количественными и отражаться в конкретных источниках. Первое может определяться нормальным законом — в этом случае результатом корреляционного анализа выступают коэффициенты корреляции Пирсона, либо, в случае, если признаки не подчиняются этому закону, используется коэффициент ранговой корреляции Спирмена.

Правила отбора факторов корреляционного анализа

При применении данного метода необходимо определиться с факторами, оказывающими влияние на результативные показатели. Их отбирают с учетом того, что между показателями должны присутствовать причинно-следственные связи. В случае создания многофакторной корреляционной модели отбирают те из них, которые оказывают существенное влияние на результирующий показатель, при этом взаимозависимые факторы с коэффициентом парной корреляции более 0,85 в корреляционную модель предпочтительно не включать, как и такие, у которых связь с результативным параметром носит непрямолинейный или функциональный характер.

Отображение результатов

Результаты корреляционного анализа могут быть представлены в текстовом и графическом видах. В первом случае они представляются как коэффициент корреляции, во втором — в виде диаграммы разброса.

При отсутствии корреляции между параметрами точки на диаграмме расположены хаотично, средняя степень связи характеризуется большей степенью упорядоченности и характеризуется более-менее равномерной удаленностью нанесенных отметок от медианы. Сильная связь стремится к прямой и при r=1 точечный график представляет собой ровную линию. Обратная корреляция отличается направленностью графика из левого верхнего в нижний правый, прямая — из нижнего левого в верхний правый угол.

Трехмерное представление диаграммы разброса (рассеивания)

Помимо традиционного 2D-представления диаграммы разброса в настоящее время используется 3D-отображение графического представления корреляционного анализа.

Также используется матрица диаграммы рассеивания, которая отображает все парные графики на одном рисунке в матричном формате. Для n переменных матрица содержит n строк и n столбцов. Диаграмма, расположенная на пересечении i-ой строки и j-ого столбца, представляет собой график переменных Xi по сравнению с Xj. Таким образом, каждая строка и столбец являются одним измерением, отдельная ячейка отображает диаграмму рассеивания двух измерений.

Оценка тесноты связи

Теснота корреляционной связи определяется по коэффициенту корреляции (r): сильная — r = ±0,7 до ±1, средняя — r = ±0,3 до ±0,699, слабая — r = 0 до ±0,299. Данная классификация не является строгой. На рисунке показана несколько иная схема.

Пример применения метода корреляционного анализа

В Великобритании было предпринято любопытное исследование. Оно посвящено связи курения с раком легких, и проводилось путем корреляционного анализа. Это наблюдение представлено ниже.

Исходные данные для корреляционного анализа

Профессиональная группа

смертность

Фермеры, лесники и рыбаки

Шахтеры и работники карьеров

Производители газа, кокса и химических веществ

Изготовители стекла и керамики

Работники печей, кузнечных, литейных и прокатных станов

Работники электротехники и электроники

Инженерные и смежные профессии

Деревообрабатывающие производства

Кожевенники

Текстильные рабочие

Изготовители рабочей одежды

Работники пищевой, питьевой и табачной промышленности

Производители бумаги и печати

Производители других продуктов

Строители

Художники и декораторы

Водители стационарных двигателей, кранов и т. д.

Рабочие, не включенные в другие места

Работники транспорта и связи

Складские рабочие, кладовщики, упаковщики и работники разливочных машин

Канцелярские работники

Продавцы

Работники службы спорта и отдыха

Администраторы и менеджеры

Профессионалы, технические работники и художники

Начинаем корреляционный анализ. Решение лучше начинать для наглядности с графического метода, для чего построим диаграмму рассеивания (разброса).

Она демонстрирует прямую связь. Однако на основании только графического метода сделать однозначный вывод сложно. Поэтому продолжим выполнять корреляционный анализ. Пример расчета коэффициента корреляции представлен ниже.

С помощью программных средств (на примере MS Excel будет описано далее) определяем коэффициент корреляции, который составляет 0,716, что означает сильную связь между исследуемыми параметрами. Определим статистическую достоверность полученного значения по соответствующей таблице, для чего нам нужно вычесть из 25 пар значений 2, в результате чего получим 23 и по этой строке в таблице найдем r критическое для p=0,01 (поскольку это медицинские данные, здесь используется более строгая зависимость, в остальных случаях достаточно p=0,05), которое составляет 0,51 для данного корреляционного анализа. Пример продемонстрировал, что r расчетное больше r критического, значение коэффициента корреляции считается статистически достоверным.

Использование ПО при проведении корреляционного анализа

Описываемый вид статистической обработки данных может осуществляться с помощью программного обеспечения, в частности, MS Excel. Корреляционный предполагает вычисление следующих парамет-ров с использованием функций:

1. Коэффициент корреляции определяется с помощью функции КОРРЕЛ (массив1; массив2). Массив1,2 — ячейка интервала значений результативных и факторных переменных.

Линейный коэффициент корреляции также называется коэффициентом корреляции Пирсона, в связи с чем, начиная с Excel 2007, можно использовать функцию с теми же массивами.

Графическое отображение корреляционного анализа в Excel производится с помощью панели «Диаграммы» с выбором «Точечная диаграмма».

После указания исходных данных получаем график.

2. Оценка значимости коэффициента парной корреляции с использованием t-критерия Стьюдента. Рассчитанное значение t-критерия сравнивается с табличной (критической) величиной данного показателя из соответствующей таблицы значений рассматриваемого параметра с учетом заданного уровня значимости и числа степеней свободы. Эта оценка осуществляется с использованием функции СТЬЮДРАСПОБР (вероятность; степени_свободы).

3. Матрица коэффициентов парной корреляции. Анализ осуществляется с помощью средства «Анализ данных», в котором выбирается «Корреляция». Статистическую оценку коэффициентов парной корреляции осуществляют при сравнении его абсолютной величины с табличным (критическим) значением. При превышении расчетного коэффициента парной корреляции над таковым критическим можно говорить, с учетом заданной степени вероятности, что нулевая гипотеза о значимости линейной связи не отвергается.

В заключение

Использование в научных исследованиях метода корреляционного анализа позволяет определить связь между различными факторами и результативными показателями. При этом необходимо учитывать, что высокий коэффициент корреляции можно получить и из абсурдной пары или множества данных, в связи с чем данный вид анализа нужно осуществлять на достаточно большом массиве данных.

После получения расчетного значения r его желательно сравнить с r критическим для подтверждения статистической достоверности определенной величины. Корреляционный анализ может осуществляться вручную с использованием формул, либо с помощью программных средств, в частности MS Excel. Здесь же можно построить диаграмму разброса (рассеивания) с целью наглядного представления о связи между изучаемыми факторами корреляционного анализа и результативным признаком.

Как неоднократно отмечалось, для статистического вывода о на­личии или отсутствии корреляционной связи между исследуемыми пе­ременными необходимо произвести проверку значимости выборочного коэффициента корреляции. В связи с тем что надежность статистиче­ских характеристик, в том числе и коэффициента корреляции, зависит от объема выборки, может сложиться такая ситуация, когда величина коэффициента корреляции будет целиком обусловлена случайными колебаниями в выборке, на основании которой он вычислен. При существенной связи между переменными коэффициент корреляции должен значимо отличаться от нуля. Если корреляционная связь меж­ду исследуемыми переменными отсутствует, то коэффициент корреля­ции генеральной совокупности ρ равен нулю. При практических ис­следованиях, как правило, основываются на выборочных наблюдениях. Как всякая статистическая характеристика, выборочный коэффициент корреляции является случайной величиной, т. е. его значения случай­но рассеиваются вокруг одноименного параметра генеральной совокуп­ности (истинного значения коэффициента корреляции). При отсутствии корреляционной связи между переменными у и х коэффициент корре­ляции в генеральной совокупности равен нулю. Но из-за случайного характера рассеяния принципиально возможны ситуации, когда не­которые коэффициенты корреляции, вычисленные по выборкам из этой совокупности, будут отличны от нуля.

Могут ли обнаруженные различия быть приписаны случайным ко­лебаниям в выборке или они отражают существенное изменение усло­вий формирования отношений между переменными? Если значения выборочного коэффициента корреляции попадают в зону рассеяния, обусловленную случайным характером самого показателя, то это не является доказательством отсутствия связи. Самое большее, что при этом можно утверждать, сводится к тому, что данные наблюдений не отрицают отсутствия связи между переменными. Но если значение вы­борочного коэффициента корреляции будет лежать вне упомянутой зоны рассеяния, то делают вывод, что он значимо отличается от нуля, и можно считать, что между переменными у и х существует статистиче­ски значимая связь. Используемый для решения этой задачи критерий, основанный на распределении различных статистик, называется крите­рием значимости.

Процедура проверки значимости начинается с формулировки ну­левой гипотезы H 0 . В общем виде она заключается в том, что между па­раметром выборки и параметром генеральной совокупности нет каких- либо существенных различий. Альтернативная гипотеза H 1 состоит в том, что между этими параметрами имеются существенные различия. Например, при проверке наличия корреляции в генеральной совокуп­ности нулевая гипотеза заключается в том, что истинный коэффициент корреляции равен нулю (Н0 : ρ = 0). Если в результате проверки ока­жется, что нулевая гипотеза не приемлема, то выборочный коэффи­циент корреляции r ух значимо отличается от нуля (нулевая гипотеза отвергается и принимается альтернативная Н1). Другими словами, предположение о некоррелированности случайных переменных в ге­неральной совокупности следует признать необоснованным. И нао­борот, если на основе критерия значимости нулевая гипотеза прини­мается, т. е. r ух лежит в допустимой зоне случайного рассеяния, то нет оснований считать сомнительным предположение о некоррелиро­ванности переменных в генеральной совокупности.

При проверке значимости исследователь устанавливает уровень значимости α, который дает определенную практическую уверенность в том, что ошибочные заключения будут сделаны только в очень ред­ких случаях. Уровень значимости выражает вероятность того, что ну­левая гипотеза Н0 отвергается в то время, когда она в действительности верна. Ясно, что имеет смысл выбирать эту вероятность как можно меньшей.

Пусть известно распределение выборочной характеристики, яв­ляющейся несмещенной оценкой параметра генеральной совокупности. Выбранному уровню значимости α соответствуют под кривой этого распределения заштрихованные площади (см. рис. 24). Незаштрихованная площадь под кривой распределения определяет вероятность Р = 1 - α. Границы отрезков на оси абсцисс под заштрихованными площадями называют критическими значениями, а сами отрезки обра­зуют критическую область, или область отклонения гипотезы.

При процедуре проверки гипотезы выборочную характеристику, вычисленную по результатам наблюдений, сравнивают с соответствую­щим критическим значением. При этом следует различать односторон­нюю и двустороннюю критические области. Форма задания критической области зависит от постановки задачи при статистическом исследова­нии. Двусторонняя критическая область необходима в том случае, когда при сравнении параметра выборки и параметра генеральной со­вокупности требуется оценить абсолютную величину расхождения между ними, т. е. представляют интерес как положительные, так и от­рицательные разности между изучаемыми величинами. Когда же надо убедиться в том, что одна величина в среднем строго больше или мень­ше другой, используется односторонняя критическая область (право- или левосторонняя). Вполне очевидно, что для одного и того же критического значения уровень значимости при использовании одно­сторонней критической области меньше, чем при использовании дву­сторонней. Если распределение выборочной характеристики симметрично,

Рис. 24. Проверка нулевой гипотезы H0

то уровень значимости двусторонней критической области равен α, а односторонней - (см. рис. 24). Ограничимся лишь общей по­становкой проблемы. Более подробно с теоретическим обоснованием проверки статистических гипотез можно познакомиться в специальной литературе. Далее мы лишь укажем критерии значимости для различ­ных процедур, не останавливаясь на их построении.

Проверяя значимость коэффициента парной корреляции, устанав­ливают наличие или отсутствие корреляционной связи между исследуе­мыми явлениями. При отсутствии связи коэффициент корреляции гене­ральной совокупности равен нулю (ρ = 0). Процедура проверки на­чинается с формулировки нулевой и альтернативной гипотез:

Н0 : различие между выборочным коэффициентом корреляцииr и ρ = 0 незначимо,

Н1 : различие междуr и ρ = 0 значимо, и следовательно, между переменнымиу и х имеется существенная связь. Из альтернативной ги­потезы следует, что нужно воспользоваться двусторонней критической областью.

В разделе 8.1 уже упоминалось, что выборочный коэффициент кор­реляции при определенных предпосылках связан со случайной вели­чиной t , подчиняющейся распределению Стьюдента сf = п - 2 сте­пенями свободы. Вычисленная по результатам выборки статистика

сравнивается с критическим значением, определяемым по таблице рас­пределения Стьюдента при заданном уровне значимости α и f = п - 2 степенях свободы. Правило применения критерия заключается в сле­дующем: если |t | >tf , то нулевая гипотеза на уровне значимостиα отвергается, т. е. связь между переменными значима; если |t | ≤tf , то нулевая гипотеза на уровне значимостиαпринимается. Отклонение значенияr от ρ = 0 можно приписать случайной вариации. Данные выборки характеризуют рассматриваемую гипотезу как весьма возмож­ную и правдоподобную, т. е. гипотеза об отсутствии связи не вызывает возражений.

Процедура проверки гипотезы значительно упрощается, если вместо статистики t воспользоваться критическими значениями коэф­фициента корреляции, которые могут быть определены через квантили распределения Стьюдента путем подстановки в (8.38)t = tf , а иr = ρ f , а:

(8.39)

Существуют подробные таблицы критических значений, выдержка из которых приведена в приложении к данной книге (см. табл. 6). Правило проверки гипотезы в этом случае сводится к следующему: если r > ρ f , а, то можем утверждать, что связь между переменными су­щественная. Еслиr rf , то результаты наблюдений считаем непро­тиворечащими гипотезе об отсутствии связи.