Безопасность жизнедеятельности в условиях глобальных воздействий техносферы. Безопасность жизнедеятельности человека в техносфере и ее принципы

Безопасность -- это состояние деятельности, при которой с определенной вероятностью исключаются потенциальные опасности, влияющее на здоровье человека.

Безопасность следует понимать как комплексную систему мер по защите человека и среды обитания от опасностей, формируемых конкретной деятельностью. Чем сложнее вид деятельности, тем более комплексна система защиты. Комплексную систему в условиях производства составляют следующие меры защиты: правовые, организационные, экономические, технические, санитарно-гигиенические, лечебно-профилактические.

Для обеспечения безопасности конкретной производственной деятельности должны быть выполнены следующие три условия:

Первое -- осуществляется детальный анализ (идентификация) опасностей, формируемых в изучаемой деятельности. Анализ должен проводиться в следующей последовательности: устанавливаются элементы среды обитания (производственной среды) как источники опасности. Затем проводится оценка имеющихся в рассматриваемой деятельности опасностей по качественным, количественным, пространственным и временным показателям.

Второе -- разрабатываются эффективные меры защиты человека и среды обитания от выявленных опасностей. Под эффективными понимаются такие меры защиты человека на производстве, которые при минимуме материальных затрат дают наибольший эффект: снижают заболеваемость, травматизм и смертность.

Третье -- разрабатываются эффективные меры защиты от остаточного риска данной деятельности (технологического процесса). Они необходимы, так как обеспечить абсолютную безопасность деятельности невозможно. Эти меры применяются в случае, когда необходимо заниматься спасением человека или среды обитания. В условиях производства такую работу выполняют службы здравоохранения, противопожарной безопасности, службы ликвидации аварий и др.

Для выполнения условий обеспечения безопасности деятельности необходимо выбрать принципы обеспечения безопасности, определить методы обеспечения безопасности деятельности и использовать средства обеспечения безопасности человека и производственной среды.

Принципы, методы и средства обеспечения безопасности деятельности

Принцип -- это идея, мысль, основное положение.

Метод -- это путь, способ достижения цели, исходящий из знания наиболее общих закономерностей.

Принципы и методы обеспечения безопасности относятся к частным, специальным в отличие от общих методов, присущих диалектике и логике. Методы и принципы определенным образом взаимосвязаны.

Средства обеспечения безопасности в широком смысле -- это конструктивное, организационное, материальное воплощение, конкретная реализация принципов и методов.

Принципы, методы и средства обеспечения безопасности -- это логические этапы обеспечения безопасности. Выбор их зависит от конкретных условий деятельности, уровня опасности, стоимости и других критериев.

В производственных условиях могут быть реализованы следующие принципы обеспечения безопасности:

Принцип гуманизации труда -- освобождение человека от выполнения механических, стереотипных, тяжелых и опасных видов труда для выполнения творческих действий.

Принцип классификации (категорирования) состоит в делении объектов на классы и категории по признакам, связанным с опасностями (санитарно-защитные зоны, категории производств по взрывопожарной опасности).

Принцип слабого звена состоит в том, что в рассматриваемую систему (объект) в целях обеспечения безопасности вводится элемент, устроенный так, что он воспринимает или реагирует на изменение соответствующего параметра, предотвращая опасные явления (предохранительные клапаны, разрывные мембраны, защитное защемление, молниеотводы, предохранители и др.).

Принцип информации заключается в передаче и усвоении персоналом сведений, выполнение которых обеспечивает соответствующий уровень безопасности (обучение, инструктажи, цвета и знаки безопасности, предупредительные надписи, маркировка оборудования и др.).

Принцип нормирования заключается в установлении таких параметров, соблюдение которых обеспечивает защиту человека от соответствующей опасности. Например, предельно допустимые концентрации или уровни, нормы переноски и подъема тяжести, продолжительность трудовой деятельности и др.

Важно понимать, что совмещение гомосферы и ноксосферы недопустимо с точки зрения безопасности. Поэтому обеспечение безопасности деятельности может быть достигнуто следующими тремя основными методами:

А -- пространственное или временное разделение гомосферы и ноксосферы; этот метод реализуется средствами дистанционного управления, автоматизации, роботизации, организации и др.

Б -- нормализация ноксосферы путем исключения опасности; это совокупность мероприятий, защищающих человека от шума, газа, пыли, опасности травмирования, и применения других средств коллективной защиты.

В -- средства и приемы, направленные на адаптацию человека к соответствующей среде и повышению его защищенности. Данный метод реализует возможности профотбора, обучения, инструктажа, применения индивидуальных средств защиты.

В реальных условиях реализуется комбинация этих названных методов.

Для обеспечения безопасности исходя из способов защиты применяют средства коллективной защиты (СКЗ) и средства индивидуальной защиты (СИЗ). Те и другие в зависимости от назначения делятся на классы. При этом СКЗ классифицируются в зависимости от опасных и вредных факторов (средства защиты от шума, вибрации, электростатических зарядов и т.д.), а СИЗ, в основном--в зависимости от защищаемых органов (средства зашиты органов дыхания, рук, головы, лица, глаз и т.д.).

По техническому исполнению СКЗ подразделяются на следующие группы: ограждения, блокировочные, тормозные, предохранительные устройства, световая и звуковая сигнализации, приборы безопасности, цвета сигнальные, знаки безопасности, устройства автоматического контроля, дистанционного управления, заземления и зануления, вентиляция, отопление, освещение, изолирующие, герметизирующие средства и др.

К СИЗ относятся противогазы и респираторы, маски, различные виды специальной одежды и обуви, рукавицы, перчатки, каски, шлемы, противошумные шлемы, защитные очки, вкладыши, предохранительные пояса, дерматологические средства и др. Эти средства создаются согласно действующим нормам. Их следует рассматривать, как вспомогательные и временные меры зашиты от опасных и вредных факторов.

Аксиома 1. Техногенные опасности существуют, если повседневные потоки вещества, энергии и информации в техносфере превышают пороговые значения.

Пороговые или предельно допустимые значения опасностей устанавливаются из условия сохранения функциональной и структурной целостности человека и природной среды. Соблюдение предельно допустимых значений потоков создает безопасные условия жизнедеятельности человека в жизненном пространстве и исключает негативное влияние техносферы на природную среду.

Аксиома 2. Источниками техногенных опасностей являются элементы техносферы.

Опасности возникают при наличии дефектов и иных неисправностей в технических системах, при неправильном использовании технических систем, а также из-за наличия отходов, сопровождающих эксплуатацию технических систем. Технические неисправности и нарушения режимов использования технических систем приводят, как правило, к возникновению травмоопасных ситуаций, а выделение отходов (выбросы в атмосферу, стоки в гидросферу, поступление твердых веществ на земную поверхность, энергетические излучения и поля) сопровождается формированием вредных воздействий на человека, природную среду и элементы техносферы.

Аксиома 3. Техногенные опасности действуют в пространстве и во времени.

Травмоопасные воздействия действуют, как правило, кратковременно и спонтанно в ограниченном пространстве. Они возникают при авариях и катастрофах, при взрывах и внезапных разрушениях зданий и сооружений. Зоны влияния таких негативных воздействий, как правило, ограничены, хотя возможно распространение их влияния и на значительные территории, например, при аварии на ЧЭАЭС.

Для вредных воздействий характерно длительное или периодическое негативное влияние на человека, природную среду и элементы техносферы. Пространственные зоны вредных воздействий изменяются в широких пределах от рабочих и бытовых зон до размеров всего земного пространства. К последним относятся воздействия выбросов парниковых и озоно-разрушающих газов, поступление радиоактивных веществ в атмосферу и т.п.

Аксиома 4. Техногенные опасности оказывают негативное воздействие на человека, природную среду и элементы техносферы одновременно.

Человек и окружающая его техносфера, находясь в непрерывном материальном, энергетическом и информационном обмене, образуют постоянно действующую пространственную систему «человек – техносфера» Одновременно существует и система «техносфера – природная среда».Техногенные опасности не действуют избирательно, они негативно воздействуют на все составляющие вышеупомянутых систем одновременно, если последние оказываются в зоне влияния опасностей.

Аксиома 5. Техногенные опасности ухудшают здоровье людей, приводят к травмам, материальным потерям и к деградации природной среды.

Воздействие травмоопасных факторов приводит к травмам или гибели людей, часто сопровождается очаговыми разрушениями природной среды и техносферы. Для воздействия таких факторов характерны значительные материальные потери.

Воздействие вредных факторов, как правило, длительное, оно оказывает негативное влияние на состояние здоровья людей, приводит к профессиональным или региональным заболеваниям. Воздействуя на природную среду, вредные факторы приводят к деградации представителей флоры и фауны, изменяют состав компонент биосферы.

При высоких концентрациях вредных веществ или при высоких потоках энергии вредные факторы по характеру своего воздействия могут приближаться к травмоопасным воздействиям. Так, например, высокие концентрации токсичных веществ в воздухе, воде, пище могут вызывать отравления.

Аксиома 6. Защита от техногенных опасностей достигается совершенствованием источников опасности, увеличением расстояния между источником опасности и объектом защиты, применением защитных мер.

Принципиально воздействие вредных техногенных факторов может быть устранено человеком полностью; воздействие техногенных травмоопасных факторов – ограничено допустимым риском за счет совершенствования источников опасностей и применения защитных средств; воздействие естественных опасностей может быть ограничено мерами предупреждения и защиты.

Аксиома 7. Компетентность людей в мире опасностей и способах защиты от них – необходимое условие достижения безопасности жизнедеятельности.

Широкая и все нарастающая гамма техногенных опасностей, отсутствие естественных механизмов защиты от них, все это требует приобретения человеком навыков обнаружения опасностей и применения средств защиты. Это достижимо только в результате обучения и приобретения опыта на всех этапах образования и практической деятельности человека. Начальный этап обучения вопросам безопасности жизнедеятельности должен совпадать с периодом дошкольного образования, а конечный – с периодом повышения квалификации и переподготовки кадров во всех сферах экономики.

Из вышесказанного следует, что мир техногенных опасностей вполне познаваем и что у человека есть достаточно средств и способов защиты от техногенных опасностей. Существование техногенных опасностей и их высокая значимость в современном обществе обусловлены недостаточным вниманием человека к проблеме техногенной безопасности, склонностью к риску и пренебрежению опасностью. Во многом это связано с ограниченными знаниями человека о мире опасностей и негативных последствиях их проявления.

Лекция 2. Вопросы БЖ в законах и подзаконных актах.

1Законодательство об охране труда. Законы и подзаконные акты. 16

2Нормативно-техническая документация (НТД). 17

3Система стандартов «Охрана природы» 18

4Система стандартов безопасности труда (ССБТ) 20

5Комплекс стандартов «Безопасность в чрезвычайных ситуациях» (БЧС) 22

    Законодательство об охране труда. Законы и подзаконные акты.

Правовую основу обеспечения безопасности жизнедеятельности составляют соответствующие законы и постановления, принятые представительными органами Российской Федерации (до 1992 г. РСФСР) и входящих в нее республик, а также подзаконные акты: указы президентов, постановления, принимаемые правительствами Российской Федерации (РФ) и входящих в нее государственных образований, местными органами власти и специально уполномоченными на то органами. Среди них прежде всего Министерство природных ресурсов РФ, Государственный комитет РФ по охране окружающей среды, Министерство труда и социального развития РФ, Министерство здравоохранения РФ, Министерство РФ по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий и их территориальные органы.

Правовую основу охраны окружающей среды в стране и обеспечение необходимых условий труда составляет закон РСФСР «О санитарно-эпидемиологическом благополучии населения» (1991 г.), в соответствии с которым введено санитарное законодательство, включающее указанный закон и нормативные акты, устанавливающие критерии безопасности и (или) безвредности для человека факторов среды его обитания и требования к обеспечению благоприятных условий его жизнедеятельности. Ряд требований по охране труда и окружающей среды зафиксировано в законе РСФСР «О предприятиях и предпринимательской деятельности» (1991 г.) и в законе РФ «О защите прав потребителей» (1992 г.).

Важнейшим законодательным актом, направленным на обеспечение экологической безопасности, является закон РСФСР «Об охране окружающей природной среды» (1991 г., введен в действие с 3.02.1992 г.).

Из других законодательных актов в области охраны окружающей среды отметим Водный кодекс РФ (1995 г.), Земельный кодекс РСФСР (1991 г.), законы Российской Федерации «О недрах» (1992 г.) и «Об экологической экспертизе» (1995 г.). До принятия соответствующих документов РФ продолжает действовать закон СССР «Об охране атмосферного воздуха» (1980 г.).

Среди законодательных актов по охране труда отметим Основы законодательства РФ по охране труда (1993 г) и Кодекс законов о труде РСФСР (с изменениями и дополнениями 1992 г.), устанавливающие основные правовые гарантии в части обеспечения охраны труда.

Правовую основу организации работ в чрезвычайных ситуациях и в связи с ликвидацией их последствий составляют законы РФ «О защите населения и территории от чрезвычайных ситуаций природного и техногенного характера» (1994 г.), «О пожарной безопасности» (1994 г.), «Об использовании атомной энергии» (1995 г.). Среди подзаконных актов в этой области отметим постановление правительства РФ «О единой государственной системе предупреждения и ликвидации чрезвычайных ситуаций» (1995 г.).

    Нормативно-техническая документация (НТД).

Эта документация по охране окружающей среды включает федеральные, республиканские, местные санитарные нормы и правила Министерства здравоохранения РФ, строительные нормы и правила Комитета по строительной, архитектурной и жилищной политике РФ, систему стандартов «Охрана природы», документы Министерства природных ресурсов РФ, Государственного комитета РФ по охране окружающий среды, Федеральной службы России по гидрометеорологии и мониторингу окружающей среды. Эти ведомства частично используют документацию организаций, правоприемниками которых они являются Минздрава СССР, Госстроя СССР, Госстандарта СССР, Госкомприроды СССР и Госгидромета СССР.

Санитарные нормы устанавливают ПДК загрязняющих веществ в атмосферном воздухе и в воде различного назначения, а также предельные уровни физических воздействий на окружающую среду (шума, вибрации, инфразвука, электромагнитных полей и излучений от различных источников, ионизирующих излучений).

В системе строительных норм и правил рассмотрены нормы проектирования сооружений различного назначения, учитывающие требования охраны окружающей среды и рационального природопользования. В группе 12 части 2 системы представлены нормы отвода земель под различные строительные объекты. Особо отметим СНиП 2.04.03–85 «Канализация. Наружные сети и сооружения», в котором подробно рассмотрены мероприятия и устройства по очистке сточных вод, их обеззараживанию, а также по утилизации осадков, полученных при очистке (группа 04 части 2 системы СНиПов).

    Система стандартов «Охрана природы»

Система стандартов «Охрана природы» – составная часть государственной системы стандартизации (ГСС), ее 17-я система. Система стандартов в области охраны природы и улучшения использования природных ресурсов–совокупность взаимосвязанных стандартов, направленных на сохранение, восстановление и рациональное использование природных ресурсов. Эта система разрабатывается в соответствии с действующим законодательством с учетом экологических, санитарно-гигиенических, технических и экономических требований.

Система стандартов в области охраны природы состоит из 10 комплексов стандартов. Кодовое название комплекса: 0 – организационно-методические стандарты; 1 –гидросфера, 2–атмосфера, 3 –биологические ресурсы, 4 –почвы, 5 –земли, 6 –флора, 7 – фауна, 8–ландшафты, 9–недра. Каждый комплекс стандартов, начиная с комплекса «гидросфера» и кончая комплексом «недра», включает в себя шесть групп стандартов (табл. 1).

Таблица 1. Классификация системы стандартов в области охраны природы

Шифр группы

Группа стандартов

Основные положения

Термины, определения, классификация

Показатели качества природных сред, параметры загрязняющих выбросов и сбросов и показатели интенсивности использования природных ресурсов

Правила охраны природы и рационального использования природных ресурсов

Методы определения параметров состояния природных объектов и интенсивности хозяйственных воздействий

Требования к средствам контроля и измерений состояния окружающей природной среды

Требования к устройствам, аппаратам и сооружениям по защите окружающей среды от загрязнений

Прочие стандарты

Обозначение стандартов в области охраны природы состоит из номера системы по классификатору, шифра комплекса, шифра группы, порядкового номера стандарта и года регистрации стандарта. Так, стандарт на предельно допустимый выброс СО бензиновых двигателей автомобилей стоит в комплексе 2 группа 2, обозначение его ГОСТ 17.2.2.03–87.

Нормативно-техническая документация по охране труда включает правила по технике безопасности и производственной санитарии, санитарные нормы и правила, стандарты системы стандартов безопасности труда, инструкции по охране труда для рабочих и служащих.

Согласно ст. 143 КЗОТ РСФСР правила по охране труда подразделяются на единые, межотраслевые и отраслевые. Единые распространяются на все отрасли экономики. Они закрепляют важнейшие гарантии обеспечения безопасности и гигиены труда, которые одинаковы для всех отраслей. Межотраслевые закрепляют важнейшие гарантии обеспечения безопасности и гигиены труда в нескольких отраслях, либо в отдельных видах производства, либо при отдельных видах работ (например, на отдельных типах оборудования во всех отраслях).

Инструкции по охране труда делятся на типовые (для рабочих основных профессий отраслей) и действующие в масштабах предприятия, организации или учреждения.

    Система стандартов безопасности труда (ССБТ)

Система стандартов безопасности труда (ССБТ) –одна из систем государственной системы стандартизации (ГСС). Шифр (номер) этой системы ГСС–12. В рамках этой системы производятся взаимная увязка и систематизация всей существующей нормативной и нормативно-технической документации по безопасности труда, в том числе многочисленных норм и правил по технике безопасности и производственной санитарии как федерального, так и отраслевого значения. ССБТ представляет собой многоуровневую систему взаимосвязанных стандартов, направленную на обеспечение безопасности труда.

Стандарты подсистемы 0 устанавливают: цель, задачи, область распространения, структуру ССБТ и особенности согласования стандартов ССБТ; терминологию в области охраны труда; классификацию опасных и вредных производственных факторов; принципы организации работы по обеспечению безопасности труда в промышленности. Большую часть этой подсистемы составляют стандарты предприятий (СТП).

Объектами стандартизации на предприятиях являются: организация работ по охране труда, контроль состояния условий труда, порядок стимулирования работы по обеспечению безопасности труда; организация обучения и инструктажа работающих по безопасности труда; организация контроля за безопасностью труда и всех других работ, которыми занимается служба охраны труда.

Стандарты подсистемы 1 устанавливают требования по видам опасных и вредных производственных факторов и предельно допустимые значения их параметров; методы и средства защиты работающих от их воздействия; методы контроля уровня указанных факторов. Стандарты подсистемы 2 устанавливают: общие требования безопасности к производственному оборудованию; требования безопасности к отдельным группам производственного оборудования; методы контроля выполнения этих требований.

Стандарты подсистемы 3 устанавливают общие требования безопасности к производственным процессам, к отдельным группам технологических процессов; методы контроля выполнения требований безопасности. Стандарты подсистемы 4 устанавливают требования безопасности к средствам защиты; подсистемы 5 – к зданиям и сооружениям.

В ССБТ принята следующая система обозначений (рис. 1).

Таким образом, если нас интересуют требования безопасности к электросварочным работам, ищем стандарт класса 12 подсистемы 3 (производственные процессы), где он фигурирует под номером 3 (ГОСТ 12.3.003–86*). Стандарт требований к защитному заземлению и занулению (их применению, устройству) следует искать в подсистеме 1 – это ГОСТ 12.1.030–81* «ССБТ. Электробезопасность. Защитное заземление, зануление». Нельзя путать стандарты такого рода со стандартами требований безопасности к средствам защиты (подсистема 4), например, ГОСТ 12.4.021–75* «ССБТ. Системы вентиляционные. Общие требования». Стандарт на обучение работающих безопасности труда, метрологическое обеспечение охраны труда следует искать в подсистеме 0 как стандарты на организационные вопросы. Это ГОСТ 12.0.004–90 и ГОСТ 12.0.005–84.

Рис.1. Система обозначений в ССБТ

Если перечень методов и средств защиты, необходимых для обеспечения требований безопасности по рассматриваемому фактору оказывается емким, его стандартизуют в рамках отдельного стандарта подсистемы 1. Примером такого документа является ГОСТ 12.1.029–80 «ССБТ. Средства и методы защиты от шума. Классификация». Так же поступают при информативно емких методах контроля требований безопасности. Так, в подсистеме 1 имеются отдельные стандарты на метод измерения на рабочих местах шума (ГОСТ 12.1.050–86), шумовых характеристик машин (ГОСТ 12.1.023–80*, ГОСТ 12.1.024–81*, ГОСТ 12.1.025–81*, ГОСТ 12.0.026–80; ГОСТ 12.1.027–80, ГОСТ 12.1.028–80) и т. д.

Требования безопасности устанавливают применительно к производственному, а не технологическому оборудованию, к производственным, а не технологическим процессам. Так, требования ГОСТ 12.2.009–80* «ССБТ. Станки металлообрабатывающие. Общие требования безопасности» относятся к станкам всех типов (токарным, сверлильным, шлифовальным, заточным и т. п.); ГОСТ 12.3.025–80* «ССБТ. Обработка металлов резанием. Требования безопасности» относится ко всем видам металлообработки резанием.

Стандарты предприятий по безопасности труда разрабатываются непосредственно на предприятии и согласовываются с профсоюзным комитетом. Они регламентируют принципы работ по обеспечению безопасности труда: организацию контроля условий труда; надзора за установками повышенной опасности; обучение работающих безопасности труда; аттестации лиц, обслуживающих установки повышенной опасности, проведение аттестации рабочих мест на предприятии и т. д.

    Комплекс стандартов «Безопасность в чрезвычайных ситуациях» (БЧС)

Основные нормативно-технические документы по чрезвычайным ситуациям объединены в комплекс стандартов «Безопасность в чрезвычайных ситуациях» (БЧС).

Основные цели комплекса:

– повышение эффективности мероприятий по предупреждению и ликвидации ЧС на всех уровнях (федеральном, региональном, местном) для обеспечения безопасности населения и объектов народного хозяйства в природных, техногенных, биолого-социальных и военных ЧС; предотвращение или снижение ущерба в ЧС;

– эффективное использование и экономия материальных и трудовых ресурсов при проведении мероприятий по предупреждению и ликвидации ЧС.

Задача комплекса – установление:

– терминологии в области обеспечения безопасности в ЧС, номенклатуры и классификации ЧС, источников ЧС, поражающих факторов;

– основных положений по мониторингу, прогнозированию и предотвращению ЧС, по обеспечению безопасности продовольствия, воды, сельскохозяйственных животных и растений, объектов народного хозяйства в ЧС, по организации ликвидации ЧС;

– уровней поражающих воздействий, степеней опасности источниковЧС;

– методов наблюдения, прогнозирования, предупреждения и ликвидации ЧС;

– способов обеспечения безопасности населения и объектов народного хозяйства, а также требований к средствам, используемым для этих целей.

Обозначение отдельного стандарта в комплексе состоит из индекса (ГОСТ Р), номера системы по классификатору (ГСС–22), номера (шифра) группы (табл. 2), порядкового номера стандарта в группе и года утверждения или пересмотра стандарта. Например, ГОСТ Р 22.0.01–94. Безопасность в чрезвычайных ситуациях. Основные положения.

Стандарты группы 0 устанавливают:

– основные положения (назначение, структуру, классификацию) комплекса стандартов;

– основные термины и определения в области обеспечения безопасности в ЧС;

– классификацию ЧС;

Таблица 2. Классификация стандартов, входящих в комплекс стандартов БЧС

Номер группы

Группа стандартов

Кодовое наименование

Основополагающие стандарты

Основные положения

Стандарты в области мониторинга и прогнозирования

Мониторинг и прогнозирование

Стандарты в области обеспечения безопасности объектов народного хозяйства

Безопасность объектов народного хозяйства

Стандарты в области обеспечения безопасности населения

Безопасность населения

Стандарты в области обеспечения безопасности продовольствия, пищевого сырья и кормов

Безопасность продовольствия

Стандарты в области обеспечения безопасности сельскохозяйственных животных и растений

Безопасность животных и растений

Стандарты в области обеспечения безопасности водоисточников и систем водоснабжения

Безопасность воды

Стандарты на средства и способы управления, связи и оповещения

Управление, связь, оповещение

Стандарты в области ликвидации чрезвычайных ситуаций

Ликвидация чрезвычайных ситуаций

Стандарты в области технического оснащения аварийно-спасательных формирований, средств специальной защиты и экипировки спасателей

Аварийно-спасательные средства

– классификацию продукции, процессов, услуг и объектов народного хозяйства по степени их опасности;

– номенклатуру и классификацию поражающих факторов и воздействий источников ЧС;

– предельно допустимые уровни (концентрации) поражающих факторов и воздействий источников ЧС;

– основные положения и правила метрологического контроля состояния технических систем в ЧС.

Лекция 3. Негативные факторы техносферы и их воздействие на человека, техносферу и природную среду

    Классификация негативных факторов производственной среды.

    Понятие о критериях безопасности техносферы.

Безопасность жизнедеятельности в техносфере / Системы защиты среды обитания.
системы обеспечения микроклимата помещений.
Параметры микроклимата помещений различного назначения.
Системы создания и обеспечения заданного микроклимата помещений.
Системы отопления зданий.
требования к системам отопления.

Безопасность жизнедеятельности в техносфере / Системы защиты среды обитания (ч..
ВОДНОЕ ХОЗЯЙСТВО ПРОМЫШЛЕННЫХ ПРЕДПРИЯТИЙ.
Классификация сточных вод.
Режимы водоотведения.
Нормы водопотребления и водоотведения.
Определение расчетных расходов производственных сточных вод.
Режим водоотведения.
Системы водоснабжения и вод

Безопасность жизнедеятельности в техносфере / Радиационная безопасность.
РАДИОАКТИВНОСТЬ.
Строение атома.
Виды ионизирующих излучений, их физическая природа и особенности распространения.
ЕДИНИЦЫ ИЗМЕРЕНИЯ И ДОЗЫ РАДИОАКТИВНОСТИ. ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ В РАДИАЦИОННОЙ БЕЗОПАСНОСТИ.
ИСТОЧНИКИ РАДИОАКТИВНОГО ОБЛУЧЕНИЯ.
Источники радиоак

Безопасность жизнедеятельности в техносфере / Надежность технических систем и техногенный риск.
КОЛИЧЕСТВЕННЫЕ ХАРАКТЕРИСТИКИ НАДЕЖНОСТИ.
Общие замечания.
Вероятность безотказной работы. Вероятность отказа.
Частота отказов. Средняя частота отказов.
Интенсивность отказов.
Среднее время безотказной работы.

Безопасность жизнедеятельности в техносфере / Мониторинг среды обитания.
Общие понятия о мониторинге. Краткая историческая справка.
Среда обитания. Человек как звено в экологической цепочке.
Понятия о мониторинге.
Организация систем мониторинга, цели и задачи мониторинга.
общие понятия мониторинга.
Слу

Безопасность жизнедеятельности в техносфере / Оценка воздействия на окружающую среду.
ОХРАНА ПОВЕРХНОСТНЫХ И ПОДЗЕМНЫХ ВОД ОТ ЗАГРЯЗНЕНИЯ.
Термины и определения.
Требования к санитарной охране водных объектов (СанПиН.
.
– .
).
Общие положения.
Правовые основы расчета ПДС.
Методические основы расчета ПДС.
Расчет кратнос

Безопасность жизнедеятельности в техносфере / Неионизирующие электромагнитные поля и излучения. Часть.
ЭЛЕКТРИЧЕСКОЕ ПОЛЕ.
Основные теоретические положения.
Источники электрического поля.
Линии электропередачи.
Распределительные устройства.
Биологическое действие и нормативы.
Биологическое действие постоянного электрическог

Безопасность жизнедеятельности в техносфере / Ноксология.
ИСТОРИЯ ФОРМИРОВАНИЯ ТЕОРИИ РИСКА.
Мировая история.
История России.
Развитие теории риска в рамках экономических теорий.
ОБЩАЯ ТЕОРИЯ РИСКА.
Биосоциотехническая система – концептуальная модель окружающего мира для изучения проблем опасности.
Концептуальная модель деяте

Безопасность жизнедеятельности в техносфере / Источники загрязнения среды обитания.
Человек как элемент системы «человек – среда».
Система «человек – среда».
Биосоциотехническая система.
определение основных понятий.
Загрязнитель, загрязнение, источники загрязнения, объекты загрязнения.
Классификация загрязнителей и источников загрязн

Безопасность жизнедеятельности в техносфере / Безопасность труда.
ПОНЯТИЕ РИСКА.
опасные и вредные производственные факторы.
Классификация опасных и вредных производственных факторов.
Основные нормативы безопасности труда.
Метеорологические условия производственной среды.
Теплообмен человека с окружающей средой.
Основные

В пособии рассматриваются вредные и опасные факторы, сопутствующие человеку в повседневной жизни, и их воздействие на человека, правила поведения в сложной экологической обстановке. Рассмотрены основные причины роста травматизма и профессиональной заболеваемости, структура законодательной и нормативно-правовой базы охраны труда, концепция безопасности и стратегия защиты от опасностей в современной техносфере. Издание 2-е выходило под названием «Безопасность жизнедеятельности в техносфере. Ч. 1».

* * *

компанией ЛитРес .

2. КОМПЛЕКСНЫЙ ХАРАКТЕР БЖД

2.1. Аксиома о потенциальной опасной деятельности

Человеческая практика дает основания для утверждения о том, что любая деятельность потенциально опасна. Ни в одном виде деятельности невозможно достичь абсолютной безопасности. Следовательно, можно сформулировать следующее заключение: любая деятельность потенциально опасна. Это хорошо иллюстрируется данными японских исследователей.


Среднее число погибших за 10 часов в разных видах деятельности


Идентификация опасностей – это процесс выявления и установления временных, пространственных и иных характеристик, необходимых и достаточных для разработки профилактических и оперативных мероприятий, направленных на обеспечение жизнедеятельности человека.

В процессе идентификации выполняется паспортизация опасностей и выявляется их номенклатура. Номенклатура опасностей – перечень названий, терминов, систематизированных по определенному признаку, например: ядовитые вещества, пестициды и т. д. При выполнении конкретных исследований составляется номенклатура опасностей для отдельных производств, цехов, профессий и т. д. Всемирная организация здравоохранения (ВОЗ) имеет номенклатуру опасностей в алфавитном порядке, например: алкоголь, вибрация и т. д. Поскольку опасность – понятие сложное, имеющее много признаков, опасности классифицируются и систематизируются.

Наука о классификации и систематизации сложных явлений, объектов, понятий называется таксономией .

Таксономия (классификация) опасностей:

1) опасности бывают реальные и потенциальные;

2) по происхождению:

– естественные (природные) – землетрясения и т. д.;

– технические (движущиеся части машин);

– антропогенные (обрушение зданий, отравление рыбой);

– экологические (загрязнения биосферы);

– смешанные;

– по локализации (месту существования) – в литосфере, гидросфере, космосе, атмосфере;

3) по виду источника:

– физические (различные излучения);

– химические (химические вещества);

– биологические (бактерии, микробы);

– психофизиологические (эпилепсия, лунатизм, усталость, монотонность);

4) по времени проявления последствий:

– мгновенные (действующие сразу, так называемые импульсивные);

– кумулятивные (действующие с запаздыванием);

5) по вызываемым последствиям:

– утомление;

– травмы;

– заболевания;

– стресс;

– летальные исходы;

6) по виду ущерба:

– технический;

– экономический;

– экологический;

– социальный;

7) сферы проявления:

– бытовая;

– производственная;

– дорожно-транспортная;

– спортивная – и т. д.;

8) по структуре (строению):

– простые;

– сложные, порождаемые взаимодействием простых;

9) по характеру воздействия:

– активные (воздействуют сами);

– пассивные, активизирующиеся за счёт энергии человека (колющие, режущие, неподвижные элементы; неровности, уклоны, по которым перемещается человек).

2.2. Классификация оборудования по степени опасности (критичности)

Имеется 4 класса опасности оборудования:

I – безопасный. Состояние, связанное с ошибками персонала, конструктивными недостатками, которые не приводят к существенным нарушениям, не вызывают повреждений оборудования и несчастных случаев;

II – граничный. Состояние, приводящее к нарушению работы оборудования, которое может быть взято под контроль, без повреждения оборудования и несчастных случаев;

III – критический. Состояние, приводящее к нарушениям в работе оборудования, его повреждению, появлению опасной ситуации, требующей немедленного спасения персонала;

IV – катастрофический. Состояние, приводящее к утере оборудования, гибели людей или массовому травматизму.

При прогнозировании и моделировании условий возникновения опасных ситуаций в первую очередь необходимо проводить анализ опасностей IV класса.

2.3. Стадии изучения опасностей

Изучение опасностей осуществляется в 3 стадии.

Стадия 1 – предварительный анализ опасностей, разбита на 3 этапа:

а) выявление источников опасностей (утечка, коррозия и др.);

б) определение конкретных частей системы, которые могут вызвать эти опасности (ёмкости, трубопроводы и др.);

в) введение ограничения на анализ, т. е. исключаются опасности, которые не будут изучаться (диверсии, землетрясения и др.).

Стадия 2 – выявление последовательности опасных ситуаций, построение деревьев причин и опасностей (попадание воды → появление ржавчины, утонение стенки, разрыв ёмкости и др.), (попадание воды → образование ржавчины, попадание ржавчины в предохранительный клапан, перекрытие клапана, разрыв ёмкости и др.).

Стадия 3 – анализ последствий аварии (выброс химических веществ, отравление людей, ударная волна, разлетание осколков и др.).

В последующем, исходя из сопоставления затрат и выгод, разрабатываются и внедряются мероприятия по предотвращению аварий.

2.4. Построение дерева причин и опасностей

Любая опасность может перейти в нежелательное событие из-за какой-то причины или нескольких причин, которые, в свою очередь, являются следствием других причин. Причины и опасности образуют цепные структуры или системы. Графическое изображение таких зависимостей напоминает ветвящееся дерево. Для построения и анализа деревьев используют символы событий (логические символы) и логические операции. Чаще всего употребляются «И» и «ИЛИ» (рис. 2.1), а также другие символы (рис. 2.2).


Рис. 2.1. Логические операции для анализа методом дерева отказов


Операция (или вентиль) «И» указывает на то, что, для того чтобы произошло событие А, должны произойти оба события: Б и В. Операция «ИЛИ» указывает, на то, что для того чтобы произошло событие Г, должно произойти одно из событий: Д или Е.

Вероятность событий А или Г рассчитывается по формулам:

где Р(А) – вероятность события А.

Построим дерево событий на примере полученной на производстве травмы (рис. 2.3).


Рис. 2.2. Символы для построения дерева событий:

1 – символ какого-либо события; 2 – символ «И»; 3 – символ «ИЛИ»; 4, 5 – символы, обозначающие исходные события, обеспеченные (достаточными) данными; 6 – домик, событие, которое может случиться или не случиться


Рис. 2.3. Дерево событий на примере полученной травмы


2.5. Методы анализа безопасности

Анализ безопасности осуществляется априорно или апостериорно, т. е. до или после нежелательного события.

При априорном анализе рассматривают такие нежелательные события, которые являются потенциально возможными для данной системы, и пытаются составить набор различных ситуаций, приводящих к их появлению (например, горение газа (CH 4) → сгорит футеровка печи).

Априорный анализ особенно эффективен, когда анализируются системы или оборудование, у которых есть аналоги, т. е. продолжительный опыт эксплуатации аналогичных систем и механизмов.

При анализе сложных систем, новой техники (и тем более при отсутствии опыта их эксплуатации) используют апостериорный анализ – определяют причину после свершившегося нежелательного события (например, авария на подводной лодке «Курск»).

2.6. Анализ безопасности методом дерева отказов

Данный вид анализа предполагает сначала установление определенного нежелательного события, так называемого «венчающего» события (рис. 2.4).


Рис. 2.4. Схема венчающего события


Венчающим событием работы блока питания реактора будет взрыв из-за неправильного соотношения в нём «топливо – окислитель». Для предотвращения реактора от этой опасности используют защитную цепь, в состав которой входят установленные на линиях подачи топлива и окислителя два датчика расхода ДР-2 и ДРЗ-4 и два регистрирующих регулятора расхода РР-1 и РР-3 (рис. 2.5). Венчающее событие – взрыв – происходит, когда во взрывчатой смеси возникает зажигание, а также когда интенсивна подача топлива или слишком низка подача окислителя.


Рис. 2.5. Структурная схема защитной цепи


Имея дерево отказов для анализа взрыва в химическом реакторе (см. рис. 2.6), можно (при проектировании) заранее предусмотреть мероприятия, которые бы или предотвращали, или своевременно информировали о появлении опасности, например, установку звуковой сигнализации при нарушении работы задвижек и т. п.

Основной проблемой при анализе безопасности является установление параметров или границ системы. Если система будет чрезмерно ограниченна, некоторые опасные ситуации могут оставаться без внимания; если рассматриваемая система слишком обширна, то результаты анализа могут оказаться крайне неопределёнными.

До какого уровня следует вести анализ, зависит от конкретных его целей, уровня квалификации, предшествующего опыта работы аналога, и обычно он выполняется с использованием сложных компьютерных программ.

Общий же подход к анализу безопасности состоит в том, чтобы выявить главные события, на которые с учётом класса опасности в данной конкретной ситуации можно влиять посредством предупредительных мер.


Рис. 2.6. Дерево отказов для анализа взрыва в химическом реакторе:

1 – испортился датчик расхода РР3 и даёт завышенные показания; 2 – испортился преобразователь РР3 и даёт сигнал уменьшить подачу; 3 – испортился регулятор РР3 и даёт сигнал уменьшить подачу; 4 – испортился клапан РР3, заедает в закрытом положении; 5 – испортился нагнетатель окислителя; 6 – не работает задвижка, ДР3-4; 7 – не полностью открылась задвижка после пуска ДР3-4; 8 – испортился датчик расхода РР1 и даёт заниженные показатели; 9 – испортился преобразователь РР1 и даёт заниженные показатели; 10 – испортился регулятор РР1 и даёт сигнал увеличить подачу; 11 – испортился клапан РР1 и заедает в открытом положении; 12 – не работает задвижка ДР3-2; 13 – воспламенение


2.7. Принципы обеспечения безопасности

О значении принципов французский философ Гельвеций (1715– 1771) писал: «Знание некоторых принципов легко возмещает незнание некоторых фактов»1 .

Принцип – это идея, мысль, основное положение теории, основа устройства, действия.

Имеется 4 основных вида принципов обеспечения безопасности.

1. Ориентирующие принципы:

– активность оператора;

– гуманизация деятельности;

– замена оператора;

– ликвидация опасности;

– системность;

– снижение опасности;

– деструкция (разрушение, нарушение нормальной структуры чего-либо).

2. Технические принципы:

– блокировка;

– вакуумирование;

– герметизация;

– увеличение расстояния;

– компрессия (сжатие газа);

– прочность;

– слабое звено;

– флегматизация;

– экранирование.

3. Организационные принципы:

– защита временем;

– информацией (передача знаний, обеспечивающих безопасность);

– резервированием;

– несовместимостью;

– нормированием;

– подбор кадров;

– последовательности;

– эргономичность.

4. Управленческие принципы:

– контроль;

– адекватность (соответствующий, равный);

– обратная связь;

– ответственность;

– планирование (например, нагрузки на рабочих);

– стимулирование;

– автоматизация;

– управление;

– эффективность.

2.8. Методы обеспечения безопасности

Метод – это путь, способ достижения цели, исходящий из знаний наиболее общих закономерностей.

Для раскрытия применяемых на практике методов обеспечения безопасности необходимо ввести два новых понятия.

Гомосфера – пространство (рабочая зона), где находится человек в процессе рассматриваемой деятельности. Ноксосфера – пространство, в котором постоянно существуют или периодически возникают опасности.

Метод А состоит в пространственном и (или) временном разделении гомосферы и ноксосферы. Совмещение гомосферы и ноксосферы недопустимо с позиции безопасности (кран – стропальщик). Реализация метода А осуществляется с помощью автоматизации средств дистанционного управления и т. д.

Метод Б состоит в нормализации ноксосферы путём исключения или в значительном снижении опасностей. Реализуется через совокупность мероприятий, защищающих человека от пыли, шума, излучений и т. д.

Метод В – повышение адаптации человека к среде – осуществляется при помощи средств индивидуальной защиты (СИЗ), профотбора, обучения и т. д.

В реальных условиях используется комбинация этих методов.

2.9. Средства обеспечения безопасности

Средства обеспечения безопасности разделяются:

1) на средства коллективной защиты – вентиляция, заземление, зануление, ограждения и т. д.;

2) СИЗ – специальная одежда, противогазы, беруши, каски и т. д.;

3) повышение надежности систем.

Под надёжностью понимается свойство системы выполнять заданные функции, сохраняя во времени значения установленных показателей.

Существуют показатели надёжности и показатели ремонтопригодности. Показатели надёжности – среднее время безотказной работы; вероятность безотказной работы; интенсивность отказов. Показатели ремонтопригодности – вероятность восстановления; среднее время восстановления; интенсивность восстановления.

2.10. Квантификация риска и опасностей

Квантификация – это введение количественных характеристик для оценки сложных, качественно определяемых понятий.

При анализе безопасности машин, оборудования, технических систем наиболее распространённой оценкой опасности является риск.

Многие специалисты предлагают ввести стоимость человеческой жизни. Однако это вызывает возражение из-за недопустимость финансовых сделок вокруг человеческих жизней. Чтобы обойти этот нравственный вопрос, количественную или экономическую оценку рассматривают обычно так: сколько необходимо затратить средств, чтобы спасти человеческую жизнь? Данная цифра колеблется в пределах 660 тыс. – 7 млн. долл. США. В Германии за смерть работника на производстве выплачивается семье 0,1–0,5 млн. евро. Денежная оценка опасности является для работодателя как бы финансовым наказанием за реализованную опасность. Подтверждением этого является тот факт, что в США, наряду с выплатой определённой суммы пострадавшим, предприниматель выплачивают солидную сумму за каждый несчастный случай на производстве в страховой фонд. Поэтому зачастую выгоднее вложить средства в обеспечение безопасности производства, нежели осуществлять соответствующие выплаты.

2.11. Методические подходы к определению риска

Процедура определения риска приблизительна и имеет 4 методических подхода:

1) инженерный, опирающийся на статистический расчет частот, вероятностный анализ безопасности, построение деревьев опасностей и причин;

2) модельный, основанный на построении моделей воздействия опасных факторов на отдельного человека, социальные, профессиональные группы и т. д.;

3) экспертный – вероятность различных событий определятся на основе опроса опытных специалистов – экспертов;

4) социологический, базирующийся на опросе населения.

Чаще всего все 4 подхода применяются вместе.

2.12. Основные положения теории риска

Риск – это вероятность наступления нежелательного события или количественная оценка опасности. Риск оценивается как отношение числа неблагоприятных последствий к их возможному числу за определённый период. Например, риск смерти на производстве R можно определить как

где n – количество людей, погибших на производстве от травм в России за год;

N общее число работающих, которые могли бы умереть на производстве от травм в России за год.

Риск таких явлений, как смертельная травма, заболевание, материальный ущерб, утомление, профессиональное заболевание, можно рассчитывать. Различают индивидуальный и социальный риск.

Индивидуальный риск характеризует опасность для отдельного человека.

Индивидуальный риск смерти от различных видов деятельности в США в год, чел.:

1) автотранспорт – 3 · 10 – 4 ;

2) станочное оборудование, огнестрельное оружие – 1 · 10 – 5 ;

3) отравление – 2 · 10 – 5 ;

4) утопление – 3 · 10 – 5 ;

5) пожар и ожог – 4 · 10 – 5 ;

6) падения – 9 · 10 – 5 ;

7) железная дорога – 4 · 10 – 6 ;

8) падающие предметы, электроток – 6 · 10 – 6 ;

9) водный, воздушный транспорт – 9 · 10 – 6 ;

10) молния – 5 · 10 – 7 ;

11) ядерная энергия на 100 реакторов – 2 · 10 – 10 .

Социальный (групповой) риск для группы людей отражает зависимость между частотой событий и числом пораженных при этом людей.

Английский ученый В. Маршал считает, что риск – частота реализации опасности. Но говорить о частоте применительно к проблемам безопасности можно лишь условно, т. к. вероятность её проявления не фиксирована во времени. Опасность может проявиться в любое время, в момент появления причины, но не чаще, чем это характерно для данного вида деятельности (рис. 2.7).

Эмоционально групповой риск воспринимается более тяжело.

Люди резко реагируют на события редкие, сопровождающиеся большим числом единовременных жертв (гибель 700 чел. на теплоходе «Адмирал Нахимов», авиакатастрофы с гибелью всех пассажиров и т. д.). В то же время частые события, в результате которых погибают небольшие группы людей, например ежедневная гибель на производстве 20–30 чел., менее впечатляют и не вызывают столь напряженного отношения.

2.13. Концепция приемлемого (допустимого) риска

Традиционная техника безопасности базировалась на категорическом требовании обеспечить полную безопасность, не допустить никаких аварий. Но опыт свидетельствует, что любая деятельность потенциально опасна.

В современных условиях от тезиса абсолютной безопасности перешли к концепции допустимого (приемлемого) риска, суть которой – в стремлении к такой малой опасности, которую приемлет общество в данный период времени.

Приемлемый риск сочетает в себе технические, экономические, социальные и политические аспекты и представляет некоторый компромисс между уровнем безопасности и возможностями её достижения. Нужно иметь в виду, что экономические возможности повышения безопасности технических систем не безграничны.

На рис. 2.8 показан упрощенный пример определения приемлемого риска.

Говоря о риске, необходимо иметь в виду, что, помимо прямого риска R пр, создаваемого данным оборудованием (на уменьшение которого направлены мероприятия по обеспечению безопасности), существует ещё и косвенный риск R косв, состоящий из социального и технического, зависящего от усложнения систем безопасности. С ростом расходов Х на безопасность R пр уменьшается, а R косв. растёт. Из рис. 2.8 видно, что начиная с некоторого уровня этих расходов при их дальнейшем росте будет происходить возрастание полного риска

R полн = R пр + R косв

При увеличении затрат технический риск снижается, но растёт социальный, т. к., затрачивая чрезмерные средства на повышение безопасности, можно нанести ущерб социальной сфере, например ухудшить медицинскую помощь (рис. 2.9).

Суммарный риск имеет минимум при определённом соотношении между инвестициями в техническую и социальную сферы. Это обстоятельство и нужно учитывать при выборе риска, с которым общество пока вынуждено мириться.

Приемлемый риск в некоторых странах, например в Голландии, установлен в законодательном порядке. Максимально приемлемым уровнем индивидуального риска гибели обычно считается 1 · 10 – 6 в год. Пренебрежимо малым считается индивидуальный риск гибели 1·10 – 8 в год.


Рис. 2.8. Определение приемлемого риска


Рис. 2.9. Определение полного риска


Максимально приемлемым риском для экосистем считается тот, при котором может пострадать 5 % видов биогеоценоза.

Приемлемый риск обычно на 2–3 порядка строже фактического. Следовательно, введение приемлемых рисков является акцией, направленной на защиту человека.

Помимо коллективной приемлемости, существует также и индивидуальная приемлемость, установленная для себя осознанно или неосознанно и являющаяся балансом между риском и выгодой. В определённых случаях люди готовы добровольно идти на риск, в 1000 раз больший, чем приемлемый. Решающая роль в принятии такого решения лежит в психологии человека.

2.14. Управление безопасностью жизнедеятельности

Под управлением БЖД понимается организованное воздействие на системы «человек – среда», «человек – производство», «человек – машина» для перевода объекта из одного опасного состояния в другое, менее опасное. При этом должны соблюдаться на основе сопоставления затрат и выгод условия экономической и технической целесообразности.

Управление БЖД – это в то же время есть управление риском. И осуществляться оно должно на всех стадиях деятельности: научный замысел, НИР, проект и его реализация, испытание, производство, транспортирование, эксплуатация, реконструкция, консервация, ликвидация и захоронение.

Управление БЖД (риском) осуществляется по нескольким направлениям:

1) обучению персонала и профессиональному отбору;

2) психологической подготовке персонала;

3) совершенствованию технических систем;

4) экономическому стимулированию;

5) управлению режимами труда и отдыха;

6) использованию средств индивидуальной и коллективной защиты;

7) воспитанию культуры безопасного поведения;

8) организации контроля;

9) прогнозированию и организации управления чрезвычайными ситуациями (ЧС);

10) материально-техническому обеспечению.

Одним из путей повышения БЖД является активное содействие всех участников трудовой деятельности в сборе и анализе информации о безопасном ведении работ, для чего все сотрудники обязаны сообщать о выявленных ими ошибках, их причинах, возможных последствиях. Накопленные данные анализируются и разрабатываются предложения по совершенствованию производства, рабочей среды, оборудования. Таким образом создаются банки данных о безопасности работы как оборудования, так и систем.

2.15. Психология и безопасность

По вине самих пострадавших происходит 60–90 % травм в быту и на производстве. В современной психологии ошибки работников рассматриваются как неизбежный элемент деятельности, причина которых связана с психическим состоянием людей, так называемым личным фактором.

Изучением особенности труда человека при взаимодействии его с техническими средствами в процессе производства и управления, а также требований, предъявляемых к конструкциям машин и приборов, с учётом психических свойств человека занимается инженерная психология.

Часто встречающимися (производственными) психическими состояниями людей являются: психическое напряжение (стресс); утомление; особые психические состояния работника.

2.16. Стресс

Стресс – это нормальная реакция человека, мобилизующая физические и психические ресурсы на выполнение какой-либо работы. Оказывает положительное влияние на работоспособность до определённого, так называемого запредельного напряжения.

Американские исследователи Р. Иеркс и Дж. Додсон экспериментально показали, что по мере возрастания эмоционального напряжения работоспособность и возможности человека повышаются по сравнению со спокойным состоянием (так называемый «мобилизующий эффект стресса»), доходят до максимума, а затем начинают падать . Чрезмерные формы психического напряжения приводят к снижению результатов труда вплоть до полной утраты работоспособности.

Зависимость между уровнем активации нервной системы и продуктивностью, получившая название инвертированной V -образной кривой, представлена рис. 2.10.


Рис. 2.10. Закон Иеркса–Додсона, связывающий активацию нервной системы А с продуктивностью действий W : I – случай, когда приращение активации ведет к приросту продуктивности ΔW 1; II – к снижению продуктивности ΔW 2; А кр – критическая активация


2.17. Утомление

До 50 % несчастных случаев происходит в конце смены в результате утомления. Запредельные психические формы утомления проявляются в двух типах реакции человека.

Тормозной тип характеризуется скованностью, замедленностью действий, замедлением мыслительной деятельности, ухудшением внимания и другими признаками, не свойственными человеку в обычной обстановке. Замедленная психическая деятельность увеличивает время операций и число совершенных ошибок.

Возбудимый тип характеризуется вспыльчивостью, грубостью, суетливостью, многословностью, дрожанием рук, излишними ненужными действиями.

2.18. Особые психические состояния

Контроль за психическим состояниям может выявить особые состояния, которые не всегда являются постоянным свойством личности, возникают спонтанно и существенно изменяют работоспособность человека. Встречается три вида особых психических состояний (рис. 2.11).


Рис. 2.11. Особые психические состояния


Параксиальное состояние связано с заболеванием мозга и проявляется отключением сознания на 1–2 мин в виде обморока, эпилепсии, лунатизма.

Психогенное состояние наступает после конфликта, гибели близких людей, обиды и т. д. Проявляется в виде снижения настроения, апатии, замедления мышления и может длиться от нескольких часов до двух месяцев. Под влиянием обид, неудач, оскорблений может развиваться аффективное состояние (взрыв эмоций, сопровождаемый агрессивными и разрушительными действиями).

Еще один вид особых психических состояний возникает в результате действия стимуляторов. Лица, склонные к аффективным состояниям, относятся к категории с повышенным риском травматизма и не должны назначаться на специальности с высокой ответственностью.

2.19. Действие стимуляторов

Приём лёгких стимуляторов (чай, кофе) помогает в борьбе с сонливостью и может способствовать повышению работоспособности на короткий период. Активные стимуляторы (фенамин, первитин) уменьшают скорость реакции, ухудшают самочувствие. Транквилизаторы (седуксен, элениум) оказывают успокоение и предупреждают развитие неврозов, однако могут снизить психическую активность, вызвать апатию и сонливость.

Алкоголь как транквилизатор приносит при избыточном употреблении колоссальный ущерб здоровью человека, разрушая прежде всего нервную систему и психику человека. Алкоголизм приводит к деградации человека, что особенно характерно для женщин. С употреблением алкоголя связаны 40–60 % случаев автомобильного травматизма и 64 % смертельных случаев на производстве.

Посталкогольная астения (похмелье) ведёт к заторможенности человека и снижению чувства осторожности («пьяному море по колено»).

Изменчивость психической деятельности под влиянием бытовых и производственных воздействий требует организации постоянного контроля над психикой человека для снижения уровня травматизма.

Учитывая, что в системе «человек – машина» самым слабым звеном является человек, контроль его над психическим состоянием на специальностях с высокой ответственностью должен быть ежедневным. Контроль осуществляется при помощи следующих приёмов:

1) предварительного осмотра;

2) профессионального отбора2 ;

3) контроля за психическим состоянием в процессе труда. Существуют тесты, позволяющие определить состояние человека в процессе работы;

4) проведения исследований по проблемам психологии, в частности, поведенческих особенностей человека;

5) обучения и тренировки человека по типу аварийных игр, т. е. с помощью имитационного моделирования; с его помощью решаются следующие задачи:

– приобретение навыков управления, мастерства;

– обучение принятию решений и анализу документации;

– отработка лидерских навыков;

– повышение эффективности взаимодействия персонала;

– обучение деятельности в экстремальных условиях без угрозы безопасности работающих.

* * *

Приведённый ознакомительный фрагмент книги Безопасность жизнедеятельности в техносфере. В 2 частях. Часть 1. Основные сведения о БЖД (В. С. Цепелев, 2014) предоставлен нашим книжным партнёром -